
Apache with SSL building from

source
Apache with ssl support should be the basic platform for providing

web services...

There are several different implementations to choose from, some

commercial (stronghold) and some open source (apache+ssl,

apache+modssl). We've chosen to work with apache+modssl.

You can use the FreeBSD ports copy of apache, or build your own.

Much of how you install and configure Apache will depend on how

the server will be used.

Will the server host lots of user websites, or just a few web-sites?

Is the machine to be a dedicated webserver ?

Is the webserver an interface to other applications?

Apache install exercise

cd /usr/local
fetch ftp://noc.ws.afnog.org/pub/FreeBSD/ports/distfiles/httpd-2.2.2.tar.gz

tar xvzf httpd-2.2.2.tar.gz

cd httpd-2.2.2

./configure --enable-ssl --with-ssl=/usr/src/crypto/openssl/ssl/

make

#make install

Certificate management
We shall now setup a certificate for our server in order to begin serving

https requests.

For this purpose we shall use the CA.sh or CA.pl scripts that come with

openssl.

First we need to create our own Certificate Authority

This we do by running

1. cd /usr/src/crypto/openssl/apps

2. chmod 0755 CA.sh

rm -rf demoCA

3. ./CA.sh -newca

You will be prompted for a pass phrase which will be used to protect your

new certificate for the authority.

Once this is done,We will then generate a signing request which we will

then sign with our new Certificate Authority.

./CA.sh -newreq to generate a new request for signing and

CA.sh -sign in order to sign the request. please use afnog06 for a passphrase

in all instances of this exercise.

Setting up apache to use your

certificate
This is done by editing

/usr/local/apache2/conf/extra/httpd-ssl.conf and changing

SSLCertificateFile

SSLCertificateKeyFile

to point to our new certificate and its key.

In normal production environments, we would normally only generate a signing requestthat

would then be signed by a recognised certificate authority.

1. mkdir /usr/local/apache2/conf/ssl.key

2. cp newcert.pem /usr/local/apache2/conf/ssl.key/server.pem

3. cp newreq.pem /usr/local/apache2/conf/ssl.key/key.pem

4. vi /usr/local/apache2/conf/extra/httpd-ssl.conf

Change the lines mentioned above to:

SSLCertificateFile /usr/local/apache2/conf/ssl.key/server.pem

SSLCertificateKeyFile /usr/local/apache2/conf/ssl.key/key.pem

Now we need to enable our SSL configuration:

vi /usr/local/apache2/conf/httpd.conf

Uncomment the line that looks like

Include conf/extra/httpd-ssl.conf

Starting up and testing apache
We now need to test whether our apache

configuration is working:

We start apache using:

/usr/local/apache2/bin/apachectl start
We then check that it is running by using:

ps -auxw |grep httpd

You should see output similar to

root 432 0.0 0.3 5296 744 ?? Ss 11:15AM 0:01.40

/usr/local/apache2/bin/httpd -k start

daemon 515 0.0 0.7 5372 1716 ?? I 11:15AM 0:00.01

 /usr/local/apache2/bin/httpd -k start

daemon 515 0.0 0.7 5372 1716 ?? I 11:15AM 0:00.01

 /usr/local/apache2/bin/httpd -k start

daemon 515 0.0 0.7 5372 1716 ?? I 11:15AM 0:00.01

 /usr/local/apache2/bin/httpd -k start

We can also check that there is actually a listening process on

both port 80

for normal http and 443 for ssl by running

netstat -an |grep LIST

tcp4 0 0 *.110 *.* LISTEN

tcp4 0 0 *.25 *.* LISTEN

tcp4 0 0 *.21 *.* LISTEN

tcp4 0 0 *.5999 *.* LISTEN

tcp4 0 0 *.80 *.* LISTEN

tcp4 0 0 *.443 *.* LISTEN

tcp4 0 0 *.22 *.* LISTEN

Testing our webserverYou can now check your apache webserver using

both a web browser and the openssl s_client

[inst@noc inst]$ openssl

OpenSSL> s_client -host localhost -port 443

This will output what happens when you make an

ssl connection and show us details of the certificates

installed. We can also do this easier by starting up X

windows and then connecting to our local

webserver

using https://localhost

Removing the pass phrase from the

certificate

 The RSA private key inside your server.key file is stored in encrypted format for

security reasons. The pass-phrase is needed to be able to read and parse this file

thus everytime you want to start the apache server you would need to enter your

passphrase. This is not useful if you want to remotely reboot your server or if you're

likely to get power issues so once you've secured your server , you can then remove

the passphrase so you can automatically start apache at boot.

1. cd /usr/local/apache2/conf/ssl.key

2. cp key.pem key.pem.orig

3. openssl rsa -in key.pem.orig -out key.pem

 It is also advisable to change the permissions on the key to make it readable only

by root since it is no longer encrypted. You should now be able to restart apache

without having to enter a pass phrase.

Virtual Hosts

The term virtual hosts refers to the practice of

maintaining more than one web server on the same

machine as differentiated by their apparent host

name. For example as an ISP you may want to host

2 different web hosting clients www.example1.com

and www.client2.com on the same apache server.

Apache makes doing this very easy using name

based virtual hosts.

Configuring virtual hosts

To configure our apache server to use virtual hosts

we must first of all edit our httpd.conf and

uncomment the line that reads:

Include conf/extra/httpd-vhosts.conf

We then proceed to edit our virtual host

configuration file in

/usr/local/apache2/conf/extra/httpd-vhosts.conf

vhost configuration

The Most important directives to consider when

configuring your apache server for virtual hosting

are the following:

NameVirtualHost

ServerName

ServerAlias

DocumentRoot

VirtualHost

Name based virtual hosts with apache will not work with SSL. You need to

use ip based virtual host because name based hosts are implemented at the

application layer while TLS is at the transport layer.

Documentation can be found at

http://httpd.apache.org/docs

http://www.modssl.org

http://httpd.apache.org/docs/vhosts/

How SSL works Handshake Sequence Protocol
The handshake sequence uses three protocols:

 * The SSL Handshake Protocol for performing the client and server SSL session

establishment.

 * The SSL Change Cipher Spec Protocol for actually establishing agreement on the

Cipher Suite for the session.

 * The SSL Alert Protocol for conveying SSL error messages between client and

server.

These protocols, as well as application protocol data, are encapsulated in the SSL

Record Protocol. An encapsulated protocol is transferred as data by the lower layer

protocol, which does not examine the data. The encapsulated protocol has no knowledge

of the underlying protocol.

The encapsulation of SSL control protocols by the record protocol means that if an

active session is renegotiated the control protocols will be transmitted securely. If there

were no session before, then the Null cipher suite is used, which means there is no

encryption and messages have no integrity digests until the session has been established.

The SSL Record Protocol is used to transfer application and SSL Control data between the

client and server, possibly fragmenting this data into smaller units, or combining multiple

higher level protocol data messages into single units. It may compress, attach digest

signatures, and encrypt these units before transmitting them using the underlying reliable

transport protocol.

One common use of SSL is to secure Web HTTP communication between a browser and a webserver.

We also commonly use it to secure other applications like pop3 and imap.

