
Hands On UNIX II

...looking a bit closer under the hood

Processes

● A running instance of a program is called a
"process"

● Identified by a numeric process id (pid)
– unique while process is running; will be re-used

some time after it terminates
● Has its own private memory space

– not accessible by other processes; not even other
instances of the same program

What does UNIX give a process?

● A table of environment variables
– just a bunch of name=value settings
– kept in memory (process gets own private copy)

● A table of open files
– 0: standard input
– 1: standard output
– 2: standard error

● A set of argument strings
– e.g. what you put after the command name

● THAT'S ALL!!

The shell: a simple interface

● The shell lets you start processes
– and waits for them to finish, unless you run them in

the "background"
● The shell lets you set environment variables
● The shell lets you set up file descriptors

– Normally stdin is connected to your keyboard and
stdout/stderr to your screen, but you can override

● The shell lets you pass arguments

Shell expansion

● The shell performs processing on your
command line before starting the program

● Splits line into words (cmd, arg1, arg2,...)
● Searches for cmd in PATH if required
● Performs various types of argument

expansion
– See exercise

The shell itself runs as a process

● A shell can start another shell
● A shell has its own environment

– e.g. it uses the PATH setting to locate programs
– it copies the environment to its children

● A shell has stdin/stdout/stderr
– You can run a non-interactive shell, i.e. a script
– Examples include periodic system tidying

● log rotation
● rebuilding of the locate database
● rebuilding of the man page index

How are new processes started ?
● The current processes “clones” itself via the

fork() call
● The fork'ed copy is called the child

– it shares all the characteristics of the parent,
including memory, open files, etc...

● The child replaces itself by calling the new
program to run via exec()
 |
 fork()
 / \
 parent child
 |
 exec()

Once a process has started...

● It can make "system calls" to the Kernel as
needed, e.g. to
– read and write data
– open and close files
– start new child processes (known as "fork") ...etc

● Using its pid, you can send it a "signal", e.g.
– Request to terminate
– Request to suspend (stop temporarily) or restart
– Certain system events also send signals

● When it ends, returns 'exit code' (0-127)
– to parent (the process which started it)

● For a "foreground" process
– Ctrl-C = terminate
– Ctrl-Z = suspend **

● Show all processes
– ps auxw

● Send a signal to any process
– kill [-sig] pid

● More advanced job control
– jobs = list all jobs (children) started by this shell
– fg %n = resume in foreground **
– bg %n = resume in background

Process control from the shell

Summary

● Processes identified by pid
● Each process at start gets 3 things:

– Environment variables, e.g. HOME="/home/you"
– Open files
– Arguments

● You can send signals to a running process
● At end it returns a numeric exit code
● Shell gives you control of these things

Practical Exercise 1

Processes and security

● Each process runs with set privileges
– effective uid
– effective gid
– supplementary groups

● Some operations are only available to root
– e.g. bind socket to port below 1024
– e.g. shut down system

● A process running as root (euid=0) can
change to any other uid - but not back again

● Other processes cannot change uid at all!

How do users change passwords?

● Note that /etc/master.passwd is only readable
and writable by root

● The 'passwd' program has special privileges,
it is marked "setuid root"

● Whenever a user starts the 'passwd' program,
kernel gives it euid=root
– It can then change the user's password

● setuid programs must be written very carefully
to avoid security holes

● Don't fiddle with setuid bits

Aside...

● It's really useful to think of commands in pairs
– The command which shows a setting and the

command which changes that setting
● Example:

– pwd shows the current working directory
– cd changes the current working directory

● Follow the 3-step system for changes
– Check things are how you think they are
– Make the change
– Check things have changed as you expected

The Virtual Filesystem (VFS)

● All filesystems appear in a single tree
● Must have a root device - /
● Can attach other devices at other points
● At bootup, everything in /etc/fstab is mounted

– except lines marked 'noauto'

Key VFS commands

● Show status
– mount
– df

● Attach device
– mount -t cd9660 /dev/acd0 /cdrom

● /cdrom is called the "mount point"
● it's just an empty subdirectory
● after mounting, the filesystem contents appear here

● Detach device
– umount /cdrom

Other devices

● Formatting a floppy disk
– fdformat /dev/fd0
– newfs_msdos -L myfloppy /dev/fd0

● Mounting a floppy disk
– mount -t msdos /dev/fd0 /mnt

● USB pen
– mount -t msdos /dev/da0s1 /mnt

● typical example
● look in /var/log/messages to check device
● use 'fdisk /dev/da0' to look at slices

●

Filesystem safety

● DON'T remove any media until it has been
unmounted
– Otherwise, filesystem can be corrupted

● Kernel won't let you unmount a filesystem if it
is in use
– Use 'fstat' to find processes using it

● ALWAYS shut down properly
● Filesystem repair tool is called "fsck"

