
Track E0
AfNOG workshop
April 23-27 2007
Abuja, Nigeria

Introduction to the DNS

Overview

● Goal of this session
● What is DNS ?
● How is DNS built and how does it work?
● How does a query work ?
● Record types
● Caching and Authoritative
● Delegation: domains vs zones
● Finding the error: where is it broken?

Goal of this session

● We will review the basics of DNS,
including query mechanisms,
delegation, and caching.

● The aim is to be able to understand
enough of DNS to be able to configure
a caching DNS server, and troubleshoot
common DNS problems, both local and
remote (on the Internet)

What is DNS ?

● System to convert names to IP
addresses:

www.afnog.org -> 196.216.2.34

● ... and back:

196.216.2.34 -> www.afnog.org

What is DNS ?

● Other information can be found in DNS:

– where to send mail for a domain
– who is responsible for this system
– geographical information
– etc...

● How do we look this information up ?

Basic DNS tools

● Using the host command:

host www.afnog.org

www.afnog.org is an alias for afnog.org.
afnog.org has address 196.216.2.34

host 196.216.2.34

34.2.216.196.in-addr.arpa domain name
pointer www.afnog.org.

Basic DNS tools

● Try this yourself with other names –
first lookup the names below, then do the
same for the IP address returned:

 www.yahoo.com
 www.nsrc.org

● Does the lookup of the IP match the
name ? Why ?

● Where did the 'host' command find the
information ?

How is DNS built ?

org com

DNS Database

etc usrbin

Unix Filesystem
... forms a tree structure

org.ng

forum.org.ng

afnog.org nsrc.org yahoo.com

ws.afnog.org

usr/local usr/sbin/etc/rc.d

usr/local/src

.(root) / (root)

ng

How is DNS built ?

● DNS is hierarchical

● DNS administration is shared – no
single central entity administrates
all DNS data

● This distribution of the
administration is called delegation

How does DNS work ?

● Clients use a mechanism called a
resolver and ask servers – this is
called a query

● The server being queried will try to
find the answer on behalf of the
client

● The server functions recursively, from
top (the root) to bottom, until it
finds the answer, asking other servers
along the way - the server is referred
to other servers

How does DNS work ?

● The client (web browser, mail program,
...) use the OS' resolver to find the
IP address.

● For example, if we go to the webpage
www.yahoo.com:
– the web browser asks the OS « I need the
IP for www.yahoo.com »

– the OS looks in the resolver configuration
which server to ask, and sends the query

● On UNIX, /etc/resolv.conf is where the
resolver is configured.

A DNS query

www.yahoo.
com

 ? « . » (root)

client server

.com DNSwww.yahoo.com ?

yahoo.com DNS

www.yahoo.com ?

ask
 .co

m D
NS

ask Yahoo DNS

87.140.2.33

87.140.2.33

www.yahoo.com ?
Q

1

2

3

4
5

6

A

Query detail with tcpdump

● Let's lookup 'h1-web.hosting.catpipe.net'

● On the server, we do:

 # tcpdump -n udp and port 53

Query detail - output
● 1: 18:40:38.62 IP 196.200.216.219.57811 > 192.112.36.4.53:

29030 [1au] A? h1-web.hosting.catpipe.net. (55)
● 2: 18:40:39.24 IP 192.112.36.4.53 > 196.200.216.219.57811:

29030- 0/13/16 (540)

● 3: 18:40:39.24 IP 196.200.216.219.57811 > 192.43.172.30.53:
7286 [1au] A? h1-web.hosting.catpipe.net. (55)

● 4: 18:40:39.93 IP 192.43.172.30.53 > 196.200.216.219.57811:
7286 FormErr- [0q] 0/0/0 (12)

● 5: 18:40:39.93 IP 196.200.216.219.57811 > 192.43.172.30.53:
50994 A? h1-web.hosting.catpipe.net. (44)

● 6: 18:40:40.60 IP 192.43.172.30.53 > 196.200.216.219.57811:
50994- 0/3/3 (152)

● 7: 18:40:40.60 IP 196.200.216.219.57811 > 83.221.131.7.53:
58265 [1au] A? h1-web.hosting.catpipe.net. (55)

● 8: 18:40:41.26 IP 83.221.131.7.53 > 196.200.216.219.57811:
58265* 1/2/3 A 83.221.131.6 (139)

Query detail - analysis

● We use a packet analyzer (wireshark /
ethereal) to view the contents of the
query...

Finding the root...

● The first query is directed to:

192.112.36.4 (G.ROOT-SERVERS.NET.)

● How does the server know where to
reach the root servers ?

● Chicken-and-egg problem
● Each namerserver has a list of the
root nameservers (A – M.ROOT-
SERVERS.NET) and their IP address

● In BIND, named.conf

Using 'dig' to get more details

● the 'host' command is limited in its
output – good for lookups, but not
enough for debugging.

● we use the 'dig' command to obtain
more details

● dig shows a lot of interesting
stuff...

Using 'dig' to get more details
ns# dig @147.28.0.39 www.afnog.org. a

; <<>> DiG 9.3.2 <<>> @147.28.0.39 www.afnog.org
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4620
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 2

;; QUESTION SECTION:
;www.afnog.org. IN A

;; ANSWER SECTION:
www.afnog.org. 14400 IN A 196.216.2.4

;; AUTHORITY SECTION:
afnog.org. 14400 IN NS rip.psg.com.
afnog.org. 14400 IN NS austin.gh.com.
afnog.org. 14400 IN NS ns-ext.isc.org.
afnog.org. 14400 IN NS ns-sec.ripe.net.

;; ADDITIONAL SECTION:
rip.psg.com. 77044 IN A 147.28.0.39
austin.gh.com. 14400 IN A 196.3.64.1

;; Query time: 708 msec
;; SERVER: 147.28.0.39#53(147.28.0.39)
;; WHEN: Wed May 10 15:05:55 2007
;; MSG SIZE rcvd: 182

http://www.afnog.org/

dig output

● Some interesting fields:

– flags section: qr aa rd
– status
– answer section
– authority section
– TTL (numbers in the left column)
– query time
– server

● Notice the 'A' record type in the
output.

Record types

● Basic record types:

● A, AAAA: IPv4, IPv6 address
● NS: NameServer
● MX: Mail eXchanger
● CNAME: Canonical name (alias)
● PTR: Reverse information

Caching vs Authoritative

● In the dig output, and in subsequent
outputs, we noticed a decrease in
query time if we repeated the query.

● Answers are being cached by the
querying nameserver, to speed up
requests and save network ressources

● The TTL value controls the time an
answer can be cached

● DNS servers can be put in two
categories: caching and authoritative.

Caching vs Authoritative:
authoritative

● Authoritative servers typically only
answer queries for data over which
they have authority, i.e.: data of
which they have a permanent copy, from
disk (file or database)

● If they do not know the answer, they
will point to a source of authority,
but will not process the query
recursively.

Caching vs Authoritative: caching

● Caching nameservers act as query
forwarders on behalf of clients, and
cache answers for later.

● Can be the same software (often is),
but mixing functionality
(recursive/caching and authoritative)
is discouraged (security risks +
confusing)

● The TTL of the answer is used to
determine how long it may be cached
without re-querying.

TTL values

● TTL values decrement and expire

● Try repeatedly asking for the A record
for www.yahoo.com:

dig www.yahoo.com

● What do you observe about the query
time and the TTL ?

SOA

● Let's query the SOA for a domain:

dig SOA <domain>
...
;; AUTHORITY SECTION:
<domain>. 86400 IN SOA ns.<domain>. root.<domain>.

200702270 ; serial
28800 ; refresh
14400 ; retry
3600000 ; expire
86400 ; neg ttl

...

SOA

● The first two fields highlighted are:

– the SOA (Start Of Authority), which the
administrator sets to the name of the
« source » server for the domain data
(this is not always the case)

– the RP (Responsible Person), which is the
email address (with the first @ replaced
by a '.') to contact in case of technical
problems.

SOA

● The other fields are:
– serial: the serial number of the zone:
this is used for replication between two
nameservers

– refresh: how often a replica server should
check the master to see if there is new
data

– retry: how often to retry if the master
server fails to answer after refresh.

– expire: when the master server has failed
to answer for too long, stop answering
clients about this data.

● Why is expire necessary ?

Running a caching nameserver

● Running a caching nameserver locally
can be very useful

● Easy to setup, for example on FreeBSD:

– add named_enable="YES" to /etc/rc.conf
– cd to /etc/namedb and run

sh make-localhost
– start named:

/etc/rc.d/named start

● What is a good test to verify that
named is running ?

Running a caching nameserver

● When you are confident that your
caching nameserver is working, enable
it in your local resolver
configuration (/etc/resolv.conf):

nameserver 127.0.0.1

Delegation

● We mentioned that one of the advantages
of DNS was that of distribution through
shared administration. This is called
delegation.

● We delegate when there is an
administrative boundary and we want to
turn over control of a subdomain to:
– a department of a larger organization
– an organization in a country
– an entity representing a country's
domain

Delegation

Delegation: Domains vs Zones

● When we talk about the entire subtree, we
talk about domains

● When we talk about part of a domain that
is administered by an entity, we talk
about zones

Delegation: Domains vs Zones

Finding the error: using doc

● When you encounter problems with your
network, web service or email, you
don't always suspect DNS.

● When you do, it's not always obvious
what the problem is – DNS is tricky.

● A great tool for quickly spotting
configuration problems is 'doc'

● /usr/ports/dns/doc – install it now!
● Let's do a few tests on screen with
doc...

Conclusion

● DNS is a vast subject
● It takes a lot of practice to pinpoint
problems accurately the first time –
caching and recursion are especially
confusing

● Remember that there are several
servers for the same data, and you
don't always talk to the same one

● Practice, practice, practice!
● Don't be afraid to ask questions...

?

Questions ?

