
Hands On UNIX

AfNOG 2010
Kigali, Rwanda

Processes
 A running instance of a program is called a "process"

 Identified by a numeric process id (pid)

� unique while process is running; will be re-used some
time after it terminates

 Has its own private memory space

� not accessible by other processes; not even other
instances of the same program

What does UNIX give a process?
 A table of environment variables

� just a bunch of name=value settings
� kept in memory (process gets own private copy)

 A table of open files

� 0: standard input
� 1: standard output
� 2: standard error

 A set of argument strings

� e.g. what you put after the command name
 THAT'S ALL!!

The shell: a simple interface
 The shell lets you start processes

� and waits for them to finish, unless you run them in
the "background"

 The shell lets you set environment variables

 The shell lets you set up file descriptors

� Normally stdin is connected to your keyboard and
stdout/stderr to your screen, but you can override

 The shell lets you pass arguments

Shell expansion
 The shell performs processing on your command

line before starting the program

 Splits line into words (cmd, arg1, arg2,...)

 Searches for cmd in PATH if required

 Performs various types of argument expansion

� See exercise

The shell itself runs as a process
 A shell can start another shell

 A shell has its own environment

� e.g. it uses the PATH setting to locate programs
� it copies the environment to its children

 A shell has stdin/stdout/stderr

� You can run a non-interactive shell, i.e. a script
� Examples include periodic system tidying

 log rotation
 rebuilding of the locate database
 rebuilding of the man page index

How are new processes started ?

 The current processes “clones” itself via the fork()
call

 The fork'ed copy is called the child

� it shares all the characteristics of the parent, including
memory, open files, etc...

 The child replaces itself by calling the new program
to run via exec()
 |
 fork()
 / \
 parent child
 |
 exec()

Once a process has started...
 It can make "system calls" to the Kernel as needed,

e.g. to

� read and write data
� open and close files
� start new child processes (known as "fork") ...etc

 Using its pid, you can send it a "signal", e.g.

� Request to terminate
� Request to suspend (stop temporarily) or restart
� Certain system events also send signals

 When it ends, returns 'exit code' (0-127)

� to parent (the process which started it)

 For a "foreground" process

� Ctrl-C = terminate

� Ctrl-Z = suspend **
 Show all processes

� ps auxw
 Send a signal to any process

� kill [-sig] pid
 More advanced job control

� jobs = list all jobs (children) started by this shell

� fg %n = resume in foreground **

� bg %n = resume in background

Process control from the shell

Summary
 Processes identified by pid

 Each process at start gets 3 things:

� Environment variables, e.g. HOME="/home/you"
� Open files
� Arguments

 You can send signals to a running process

 At end it returns a numeric exit code

 Shell gives you control of these things

Processes and security
 Each process runs with set privileges

� effective uid
� effective gid
� supplementary groups

 Some operations are only available to root

� e.g. bind socket to port below 1024
� e.g. shut down system

 A process running as root (euid=0) can change to any
other uid - but not back again

 Other processes cannot change uid at all!

How do users change passwords?
 Note that /etc/master.passwd is only readable and

writable by root

 The 'passwd' program has special privileges, it is marked
"setuid root"

 Whenever a user starts the 'passwd' program, kernel
gives it euid=root

� It can then change the user's password
 setuid programs must be written very carefully to avoid

security holes

 Don't fiddle with setuid bits

Aside...
 It's really useful to think of commands in pairs

� The command which shows a setting and the
command which changes that setting

 Example:

� pwd shows the current working directory
� cd changes the current working directory

 Follow the 3-step system for changes

� Check things are how you think they are
� Make the change
� Check things have changed as you expected

The Virtual Filesystem (VFS)
 All filesystems appear in a single tree

 Must have a root device - /

 Can attach other devices at other points

 At bootup, everything in /etc/fstab is mounted

� except lines marked 'noauto'

Key VFS commands
 Show status

� mount
� df

 Attach device

� mount -t cd9660 /dev/acd0 /cdrom
 /cdrom is called the "mount point"
 it's just an empty subdirectory
 after mounting, the filesystem contents appear

here
 Detach device

� umount /cdrom

Other devices
 Formatting a floppy disk

� fdformat /dev/fd0
� newfs_msdos -L myfloppy /dev/fd0

 Mounting a floppy disk

� mount -t msdos /dev/fd0 /mnt
 USB pen

� mount -t msdos /dev/da0s1 /mnt
 typical example
 look in /var/log/messages to check device
 use 'fdisk /dev/da0' to look at slices

Filesystem safety
 DON'T remove any media until it has been

unmounted

� Otherwise, filesystem can be corrupted
 Kernel won't let you unmount a filesystem if it is in

use

� Use 'fstat' to find processes using it
 ALWAYS shut down properly

 Filesystem repair tool is called "fsck"

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

