
Shell Scripting
AFNOG XI

Kigali, Rwanda
May 2010

Friday, 28 May, 2010

Demo

 Demonstration of script built for sae 2010

Friday, 28 May, 2010

Why

 Scheduled Tasks
 Repetitive sequences
 Boot scripts

Friday, 28 May, 2010

When not to use scripting

 Resource-intensive tasks, especially where
speed is a factor

 Complex applications, where structured
programming is a necessity

 Need direct access to system hardware
 Proprietary, closed-source applications

Friday, 28 May, 2010

Sample repetitive tasks

 Cleanup
 Run as root, of course.

cd /var/log

cat /dev/null > messages

cat /dev/null > wtmp

echo "Logs cleaned up.”
 You can put these commands in a file and

say bash filename

Friday, 28 May, 2010

she-bang

 #! and the shell (first line only)
 chmod a+x (remember the permissions)
 Example: put the following text in hello.sh

#!/bin/bash
echo Hello World

 chmod a+x hello.sh
 ./hello.sh (remember $PATH)

Friday, 28 May, 2010

variables
 Variable is a “container” of data. Some

variables already exist in your “environment”
like $PATH and $PROMPT

 Shell substitutes any token that starts with $
with the contents of the variable of that
name

 Variable can be created using
VAR=something – some shells require the
keyword “set” to make it persist, others need
“export”

Friday, 28 May, 2010

Sample special variables
$ echo $PATH

the shell searches PATH for programs if you do not type them with an
absolute path

$ echo pwd
$ echo $(pwd)

the shell runs the command in between “$(“ and “)” and puts the result on
the command line

$?

When a process ends, it can leave an “exit code” which is an integer which
you can check. If the exit code is zero then usually it exited
successfully. Non zero usually indicates an error.

Friday, 28 May, 2010

sample repetitive tasks revisited
#!/usr/local/bin/bash # Proper header for a Bash script.

Cleanup, version 2

Run as root, of course.
Insert code here to print error message and exit if not root.

LOG_DIR=/var/log# Variables are better than hard-coded values.

cd $LOG_DIR
cat /dev/null > messages
cat /dev/null > wtmp

echo "Logs cleaned up.”

Friday, 28 May, 2010

Conditionals

 if expression then statement
 if expression then statement1 else

statement2.
 if expression1 then statement1 else if

expression2 then statement2 else
statement3

Friday, 28 May, 2010

Bash conditional syntax
#!/usr/local/bin/bash
if ["foo" = "foo"]; then
 echo expression evaluated as true
fi

#!/usr/local/bin/bash
if ["foo" = "foo"]; then
 echo expression evaluated as true
else
 echo expression evaluated as false
fi

Friday, 28 May, 2010

Loops
 for loop lets you iterate over a series of

'words' within a string.
 while executes a piece of code if the control

expression is true, and only stops when it is
false

 until loop is almost equal to the while loop,
except that the code is executed while the
control expression evaluates to false.

Friday, 28 May, 2010

Sample syntax
#!/usr/local/bin/bash
for i in $(ls); do
 echo item: $i
done

#!/usr/local/bin/bash
COUNTER=0
while [$COUNTER -lt 10]; do
 echo The counter is $COUNTER
let COUNTER=COUNTER+1
done

#!/usr/local/bin/bash
COUNTER=20
until [$COUNTER -lt 10]; do
 echo COUNTER $COUNTER
 let COUNTER-=1
done

Friday, 28 May, 2010

Practice

 Write a shell script to print the disk usage
every 5 seconds.

 Hint: sleep N is a command which will
basically put the prompt/program to sleep for
N seconds

 Hint2: in any conditional, you can say “true”
or “false” to force it to always evaluate like
that.

Friday, 28 May, 2010

Extra

 Programming (say in C) builds on similar
concepts.

 Source text is COMPILED into binary
machine code. Why?

Friday, 28 May, 2010

hello world (c style)
 Edit hello.c and put the following text

#include <stdio.h>
int main(){
 printf(“Hello World\n”);
 return 0;
}

 Type gcc -o hello hello.c
 Type ./hello ; echo $?
 Change the return 0 to return 42
 Compile it again,
 Run ./hello; echo $?

Friday, 28 May, 2010

Demo2 Makefile

 Demonstration of Makefile for sae 2010

Friday, 28 May, 2010

