Introduction to IPv6

AfNOG 2011 AR-E Workshop

Early Internet History

- Late 1980s
 - Exponential growth of the Internet
- □ Late 1990: CLNS proposed as IP replacement
- 1991-1992
 - Running out of "class-B" network numbers
 - Explosive growth of the "default-free" routing table
 - Eventual exhaustion of 32-bit address space
- Two efforts short-term vs. long-term
 - More at "The Long and Windy ROAD"
 - http://rms46.vlsm.org/1/42.html

Early Internet History

- CIDR and Supernetting proposed in 1992-3
 - Deployment started in 1994
- □ IETF "ipng" solicitation RFC1550, Dec 1993
- Direction and technical criteria for ipng choice RFC1719 and RFC1726, Dec 1994
- Proliferation of proposals:
 - TUBA RFC1347, June 1992
 - PIP RFC1621, RFC1622, May 1994
 - CATNIP RFC1707, October 1994
 - SIPP RFC1710, October 1994
 - NIMROD RFC1753, December 1994
 - ENCAPS RFC1955, June 1996

Early Internet History

→ 1996

- Other activities included:
 - Development of NAT, PPP, DHCP,...
 - Some IPv4 address reclamation
 - The RIR system was introduced
- □ → Brakes were put on IPv4 address consumption
- IPv4 32 bit address = 4 billion hosts
 - HD Ratio (RFC3194) realistically limits IPv4 to 250 million hosts

Recent Internet History The "boom" years → 2001

- IPv6 Development in full swing
 - Rapid IPv4 consumption
 - IPv6 specifications sorted out
 - (Many) Transition mechanisms developed
- 6bone
 - Experimental IPv6 backbone sitting on top of Internet
 - Participants from over 100 countries
- Early adopters
 - Japan, Germany, France, UK,...

Recent Internet History The "bust" years: 2001 → 2004

- The DotCom "crash"
 - i.e. Internet became mainstream
- □ IPv4:
 - Consumption slowed
 - Address space pressure "reduced"
- Indifference
 - Early adopters surging onwards
 - Sceptics more sceptical
 - Yet more transition mechanisms developed

2004 → Today

- Resurgence in demand for IPv4 address space
 - All IPv4 address space was allocated by IANA by 3rd February 2011
 - Exhaustion predictions did range from wild to conservative
 - ...but today it has all gone!
 - ...and what about the market for address space?
- Market for IPv4 addresses:
 - Creates barrier to entry
 - Condemns the less affluent to tyranny of NATs
- □ IPv6 offers vast address space
 - The only compelling reason for IPv6

Current Situation

- General perception is that "IPv6 has not yet taken hold"
 - IPv4 Address run-out has now made it into "headline news"
 - More discussions and run-out plans proposed
 - Private sector still demanding a business case to "migrate"
 - No easy Return on Investment (RoI) computation
- But reality is very different from perception!
 - Something needs to be done to sustain the Internet growth
 - IPv6 or NAT or both or something else?

- Internet population
 - \sim 630 million users end of 2002 10% of world pop.
 - \sim 1320 million users end of 2007 20% of world pop.
 - Future? (World pop. ~9B in 2050)
- US uses 92 /8s this is 6.4 IPv4 addresses per person
 - Repeat this the world over...
 - 6 billion population could require 26 billion IPv4 addresses
 - (7 times larger than the IPv4 address pool)

Other Internet Economies:

```
China 17.5 IPv4 /8s
```

Japan 11.2 IPv4 /8s

Korea 6.3 IPv4 /8s

Germany 5.5 IPv4 /8s

UK 4.9 IPv4 /8s

Source: http://bgp.potaroo.net/iso3166/v4cc.html

- Emerging Internet economies need address space:
 - China would need more than a /4 of IPv4 address space if every student (320M) is to get an IPv4 address
 - India lives behind NATs (using only 1.8 /8s)
 - Africa lives behind NATs (using less than 1.5 /8s)

- Mobile Internet introduces new generation of Internet devices
 - PDA (~20M in 2004), Mobile Phones (~1.5B in 2003), Tablet PC
 - Enable through several technologies, eg: 3G, 802.11,...
- Transportation Mobile Networks
 - 1B automobiles forecast for 2008 Begin now on vertical markets
 - Internet access on planes, e.g. Connexion by Boeing
 - Internet access on trains, e.g. Narita Express
- Consumer, Home and Industrial Appliances

- □ RFC 1918 is not sufficient for large environments
 - Cable Operators (e.g. Comcast NANOG37 presentation)
 - Mobile providers (fixed/mobile convergence)
 - Large enterprises
- The Policy Development process of the RIRs turned down a request to increase private address space
 - RIR community guideline is to use global addresses instead
 - This leads to an accelerated depletion of the global address space
- Some wanted 240/4 as new private address space
 - But how to back fit onto all TCP/IP stacks released since 1995?

- Large variety of proposals to "help" with IPv6 deployment
 - NAT444
 - Lots of IPv4 NAT
 - Dual Stack Lite
 - Improvement on NAT464 (tunneling IPv4 over IPv6 backbone)
 - Activity of IETF Softwires Working Group
 - NAT64 & IVI
 - Translation between IPv6 and IPv4
 - Activity of IETF Behave Working Group
 - 6rd
 - Dynamic IPv6 tunnel from SP to customer
 - Activity of IETF Softwires Working Group

IPv6 Geo-Politics

- Regional and Countries IPv6 Task Force
 - Europe www.ipv6-taskforce.org/
 - □ Belgium, France, Spain, Switzerland, UK,...
 - North-America www.nav6tf.org/
 - Japan IPv6 Promotion Council www.v6pc.jp/en/index.html
 - China, Korea, India,...
- Relationship
 - Economic partnership between governments
 - China-Japan, Europe-China,...
- Recommendations and project's funding
 - IPv6 2005 roadmap recommendations Jan. 2002
 - European Commission IPv6 project funding: 6NET & Euro6IX
- Tax Incentives
 - Japan only 2002-2003 program

Status in Internet Operational Community

- Service Providers get an IPv6 prefix from their regional Internet Registries
 - Very straight forward process when compared with IPv4
- Much discussion amongst operators about transition:
 - NOG experiments of 2008
 - http://www.civil-tongue.net/6and4/
 - What is really still missing from IPv6
 - http://www.nanog.org/mtg-0710/presentations/Bush-v6op-reality.pdf
 - Many presentations on IPv6 deployment experiences

Service Provider Status

- Many transit ISPs have "quietly" made their backbones IPv6 capable as part of infrastructure upgrades
 - Native is common (dual stack)
 - Providers using MPLS use 6PE
 - Tunnels still used (unfortunately)
- Examples:
 - NTT/Verio has been long time IPv6 capable
 - HE, OpenTransit/FT, TATA International, Telecom Italia, GlobalCrossing, Telefonica, C&W (EU),...

OS, Services, Applications, Content

Operating Systems

- MacOS X, Linux, BSD Family, many SYS V
- Windows: XP SP2 (hidden away), Vista, 7
- All use IPv6 first if available

Applications

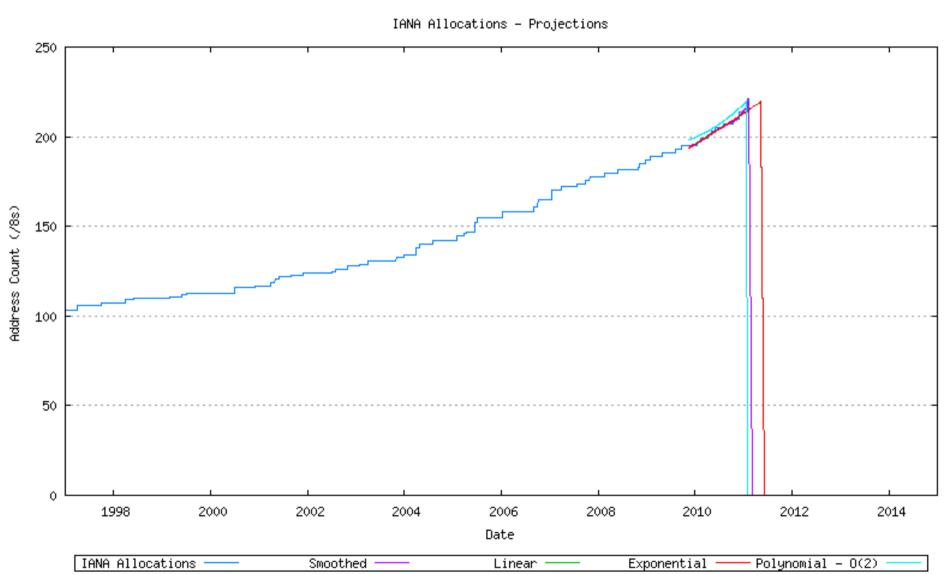
- Browsers, E-mail clients, IM, bittorrent,...
- Services
 - DNS, Apache WebServer, E-mail gateways,...
- Content Availability
 - Needs to be on IPv4 and on IPv6

Why are we still waiting...?

- That killer application?
 - Internet Gaming or Peer to Peer applications?
 - Windows 7 (?), Apple iPad (?)
- □ IPv4 to run out?
 - Too late, it has!
- Our competitors?
 - Any network deployed in last 3 years will be IPv6 capable
 - Even if not enabled!
- The end-user?
 - The end-user should not have to choose protocols
 - Remember "Turbo" button on early IBM PC clones?

The On-going Debate (1)

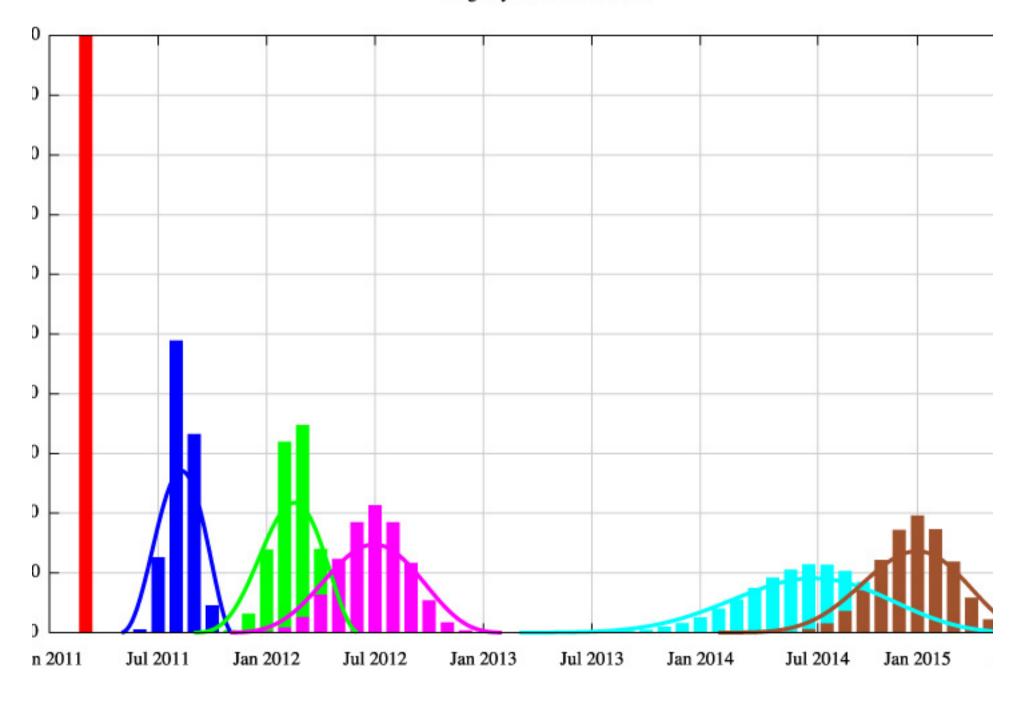
- IPv6 Multihoming
 - Same toolset as IPv4 long term non-scalable
 - 'Ultimate Multihoming Solution' no nearer discovery
 - LISP is making interesting progress though
- Early rigid IPv6 address allocation model
 - "One size fits all" barrier to deployment:
 - Only ISPs "should" get IPv6 space from RIRs
 - Enterprises "should" get IPv6 space from ISPs only
 - Routing table entries matter, not the nature of business
 - What is an ISP?


The On-going Debate (2)

- Not every IPv4 device is IPv6 capable
 - Do we really need to replicate all IPv4 capability in IPv6 prior to considering deployment?
- "We have enough IPv4"
 - Those with plenty denying those with little/nothing
- Migration versus Co-existence
 - Realistically IPv6 and IPv4 will co-exist for many years
 - Dual-stack operating systems in network equipment makes this trivial

Why not use Network Address Translation?


- Private address space and Network address translation (NAT) could be used instead of IPv6
- But NAT has many serious issues:
 - Breaks the end-to-end model of IP
 - Breaks end-to-end network security
 - Serious consequences for Lawful Intercept
 - Non-NAT friendly applications means NAT has to be upgraded
 - Some applications don't work through NATs
 - Layered NAT devices
 - Mandates that the network keeps the state of the connections
 - How to scale NAT performance for large networks??
 - Makes fast rerouting and multihoming difficult
 - How to offer content from behind a NAT?


Is IPv4 really running out?

Is IPv4 really running out?

- Yes!
 - IANA IPv4 free pool ran out on 3rd February 2011
 - RIR IPv4 free pool will run out soon after
 - (APNIC entered final /8 phase on 14 April 2011)
 - www.potaroo.net/tools/ipv4/
 - (depends on RIR soft-landing policies)
- The runout gadgets and widgets are now watching when the RIR pools will run out:
 - inetcore.com/project/ipv4ec/index_en.html
 - ipv6.he.net/statistics/

IPv4 run-out

- Policy Development process in each RIR region has discussed and implemented many proposals relating to IPv4 run-out, for example:
 - The Last /8
 - All RIRs will receive one /8 from the IANA free pool
 - IPv4 address transfer
 - Permits LIRs to transfer address space to each other rather than returning to their RIR
 - Soft landing
 - Reduce the allocation sizes for an LIR as IPv4 pool is depleted
 - IPv4 distribution for IPv6 transition
 - Reserving a range of IPv4 address to assist with IPv6 transition (for Large Scale NATs etc)

Issues Today

- Minimal content is available on IPv6
 - Notwithstanding ipv6.google.com
 - World IPv6 Day on 8th June 2011 may change this!
- Giving IPv6 to customers might confuse
 - Browsers,e-mail clients, etc are smart
 - But increased tech support if IPv6 version of content is 'down', but IPv4 version works
- Need to "prolong" IPv4 so there is time for all content to be available on IPv6

Conclusion

- There is a need for a larger address space
 - IPv6 offers this will eventually replace NAT
 - But NAT will be around for a while too
 - Market for IPv4 addresses looming also
- Many challenges ahead

Introduction to IPv6

AfNOG 2011 AR-E Workshop