INTRODUCTION OF INFORMATION SECURITY

AfNOG 2011 - Tanzania

By Marcus K. G. Adomey

Presentation adapted from JPCERT presentation During AfriNic meeting in South Africa – Nov 2010

Overview

- ✓ Security Architecture
- ✓ Nature of Information Security Risk
- ✓ Principles of Information Security
- ✓ Security Process

Security Architecture

Design of systems to satisfy security requirements.

Nature of Information Security Risk

As number or usefulness of functions increase, information security risks also increase.

Security is only as strong as

the weakest link.

As time goes by,

information security risks

of a system increase.

Principles of Information Security

Layered Security / Defense in Depth

- ✓ Avoid single point of failure.
- "Make the effort for compromise more costly than it is worth to a potential attacker."(Conklin et.al., Principles of Computer Security)
- ✓ Maintenance cost increases. (drawback)

Least Privilege

"A subject(user, applications, or process) should have only the necessary rights and privileges to perform its task with no additional permissions.)"

"Limiting an object's privileges limits the amount of harm that can be caused, thus limiting an organization's exposure to damage." (Conklin et.al.)

Compartmentalize

- ✓ Divide assets into separate sections.
- ✓ Limit the access of a successful intruder.
- ✓ Increase layers of security.
- ✓ Increases complexity and costs (drawback).

Secure the Weakest Link

"A system is only as secure as the weakest link."

"Find the weakest link and secure it. Then worry about the

next weakest link." (Schneier, Secrets & Lies)

Keep It Simple

If you do not understand something, you cannot truly secure it.

"Complexity is the worst enemy of security." (Schneier)

"A system with fewer links is easier to secure."

Make systems, applications and processes as simple as possible.

Halt services that you do not use.

Diversity of Defense

Mix products from different vendors.

Increase layers of security.

Increases complexity and costs (drawback).

Fail Secure

When a system fails, it must retain secure state.

Design systems as default secure.

Security Through Obscurity

- "Approach of protecting by hiding it."
- Make it difficult to attack, but "does not prevent anyone from eventually succeeding."
- "Security through obscurity is considered a poor approach, especially if it is the only approach to security." (Conklin et.al.) "Not in products, but in how products are used. I call this unpredictability." (Schneier)

Security Proceed through

- ✓ Countermeasure Strategy
- ✓ Risk Analysis and Management Process
- ✓ Information Policy

Security Countermeasure Strategy

Strategy	Description	Implementation			
Resistance	capability of a system to repel attacks	firewall, recognition, access control, cryptography etc.			
Recognition	capability to detect attacks as they occur and to evaluate the extent of damage and compromise	Intrusion Detection System, audit trail analysis, integrity check etc.			
Recovery	capability to maintain essential services and assets during attack, limit the extent of damage, and restore full services following attack	Back up and recovery, Incident Response etc.			

Information Security Policy

Risk Management

Risk management is the identification, assessment, and

prioritization of risks

Assets Analysis

Identification of Assets

- ✓ Hardware (Servers, Network Equipment)
- ✓ Software
- 🗸 Data
- ✓ People
- ✓ Documentation
- ✓ Supplies

Classification of Asset Values

- ✓ High
- ✓ Mid
- ✓ Low

Definition of Responsibility for the Assets

Asset	Value	Owner
Accounting Data	High	A
Config Data	Mid	В
Marketing Data	High	С
Customer Data	High	A
Router	Mid	A
Hub	Low	В
Web Server	High	D

Risk analysis

It a systematic use of information to identify sources and to estimate the risk

Risk Analysis Approaches

- ✓ Baseline Approaches
- ✓ Informal Approaches
- ✓ Detailed Risk Analysis
- Combined Approaches

Threat Analysis

- ✓ Network Intrusion
- ✓ Malware
- ✓ Power Outage
- ✓ Theft
- Insider Abuse
- ✓ Earthquake

Classification

Threat	Level		
Network Intrusion	MID		
Malware	HIGH		
Power Outage	MID		
Theft	MID		
Insider Abuse	MID		
Earthquake	LOW		
Missoperation	MID		

Vulnerability Analysis

- ✓ Mis-configuration
- ✓ Un-patched software
- ✓ Inappropriate access control
- ✓ Physical weakness of facility

Vulnerability	Level	Threat		
Misconfiguration	MID	Network Intrusion		
Unpatched Software	HIGH	Malware		
Inappropriate	MID	Network Intrusion		
access control	MID	Insider Abuse		
Dhysical weakness	MID	Theft		
Physical weakness	MID	Earthquake		
Weak password	MID	Network Intrusion		

Risk Analysis

Asset	Class	Threat	Level	Vulnerability	Level	Control	
Accounting Data	Top Secret	Insider abuse	MID	MID Misconfiguration		Auditing	
Configuration Data	Top Secret	Network Intrusion	MID	Bad access control	MID	Auditing	
Web Server	Important	Network Intrusion	MID	Misconfiguration	MID	Auditing	
Router	Important	Earthquake	LOW	Physical weakness	MID	Backup	
e-mail message	Secret	Network Intrusion	MID	Weak password	MID	Log monitoring	

Residual Risk Analysis

✓ Defined the acceptable

		Threat								
		Low		Mid		High				
_		Vulnerability								
	Asset Value	Low	Mid	High	Low	Mid	High	Low	Mid	High
	Low	LLL	LLM	LLH	LML	LMM	LMH	LHL	LHM	LHH
	Mid	MLL	MLM	MLH	MML	MMM	MMH	MHL	MHM	MHH
	High	HLL	HLM	HLH	HML	HMM	HMM	HHL	HHM	ННН

Acceptable Risk

- - -

Unacceptable Risk (Require some control measure to reduce the risk)