IP Addressing

Scalable Infrastructure Workshop AfNOG 2011

Purpose of an IP address

Unique Identification of:

Source

- So the recipient knows where the message is from
- Sometimes used for security or policy-based filtering of data
- Destination

So the networks know where to send the data

- Network Independent Format
 - IP over anything

Purpose of an IP Address

- Identifies a machine's connection to a network
- Physically moving a machine from one network to another requires changing the IP address
- Unique; assigned in a hierarchical fashion
 - IANA (Internet Assigned Number Authority)
 - IANA to RIRs (AfriNIC, ARIN, RIPE, APNIC, LACNIC)
 - RIR to ISPs and large organisations
 - ISP or company IT department to end users
- IPv4 uses unique 32-bit addresses
- IPv6 uses unique 128-bit addresses

Basic Structure of an IPv4 Address

- 32 bit number (4 octet number): (e.g. 133.27.162.125)
- Decimal Representation:

133	27	162	125
-----	----	-----	-----

Binary Representation:

10000101 00011011 10100010 01111101

Hexadecimal Representation:

85 1B	A2	7D
-------	----	----

Address Exercise

Address Exercise

- Construct an IP address for your router's connection to the backbone network.
- **196.200.220.x**
- $\Box x = 1$ for row A, 2 for row B, etc.
- Write it in decimal form as well as binary form.

Addressing in Internetworks

The problem we have

- More than one physical network
- Different Locations
- Larger number of hosts
- Need a way of numbering them all

We use a structured numbering system

- Hosts that are connected to the same physical network have "similar" IP addresses
- Often more then one level of structure; e.g. physical networks in the same organisation use "similar" IP addresses

Network part and Host part

- Remember IPv4 address is 32 bits
- Divide it into a "network part" and "host part"
 - network part" of the address identifies which network in the internetwork (e.g. the Internet)
 - "host part" identifies host on that network
 - Hosts or routers connected to the same link-layer network will have IP addresses with the same network part, but different host part.
 - Host part contains enough bits to address all hosts on the subnet; e.g. 8 bits allows 256 addresses

Dividing an address

Hierarchical Division in IP Address:

- Network Part (or Prefix) high order bits (left)
 describes which physical network
- Host Part low order bits (right)
 - describes which host on that network

- Boundary can be anywhere
 - choose the boundary according to number of hosts
 very often NOT a multiple of 8 bits

Network Masks

- Network Masks" help define which bits are used to describe the Network Part and which for the Host Part
- Different Representations:
 - decimal dot notation: 255.255.224.0
 - binary: 11111111 1111111 11100000 00000000
 - hexadecimal: 0xFFFFE000
 - number of network bits: /19

count the 1's in the binary representation

Above examples all mean the same: 19 bits for the Network Part and 13 bits for the Host Part

Example Prefixes

137.158.128.0/17 (netmask 255.255.128.0)

198.134.0.0/16 (netmask 255.255.0.0)

 1111 111
 1111 111
 0000 0000
 0000 0000

 1100 0110
 1000 0110
 0000 0000
 0000 0000

205.37.193.128/26 (netmask 255.255.255.192)

1111 1111	1111 1111	1111 1111	11	00 0000	
1100 1101	0010 0101	1100 0001	10	00 0000	

Special Addresses

All 0's in host part: Represents Network

- e.g. 193.0.0/24
- e.g. 138.37.64.0/18
- e.g. 196.200.223.96/28
- All 1's in host part: Broadcast
 - e.g. 193.0.0.255 (prefix 193.0.0.0/24)
 - e.g. 138.37.127.255 (prefix 138.37.64.0/18)
 - e.g. 196.200.223.111 (prefix 196.200.223.96/28)
- 127.0.0/8: Loopback address (127.0.0.1)
- 0.0.0.0: Various special purposes

Ancient History: Implied netmasks

- A classful network had a "natural" or "implied" prefix length or netmask:
 - Class A: prefix length /8 (netmask 255.0.0.0)
 - Class B: prefix length /16 (netmask 255.255.0.0)
 - Class C: prefix length /24 (netmask 255.255.255.0)
- Modern (classless) routing systems have explicit prefix lengths or netmasks
 - You can't just look at an IP address to tell what the prefix length or netmask should be. Protocols and configurations need explicit netmask or prefix length.

Classless addressing

- Class A, Class B, Class C terminology and restrictions are now of historical interest only
 - Obsolete in 1994
- Internet routing and address management today is classless
- CIDR = Classless Inter-Domain Routing
 - Routing does not assume that former class A, B, C addresses imply prefix lengths of /8, /16, /24
- VLSM = Variable-Length Subnet Masks
 - Routing does not assume that all subnets are the same size

Classless addressing example

- An ISP gets a large block of addresses
 - e.g., a /16 prefix, or 65536 separate addresses
- Assign smaller blocks to customers
 - e.g., a /22 prefix (1024 addresses) to one customer, and a /28 prefix (16 addresses) to another customer (and some space left over for other customers)
- An organisation that gets a /22 prefix from their ISP divides it into smaller blocks
 - e.g. a /26 prefix (64 addresses) for one department, and a /27 prefix (32 addresses) for another department (and some space left over for other internal networks)

Classless addressing exercise

- Consider the address block 133.27.162.0/23
- Allocate 5 separate /29 blocks, one /27 block, and one /25 block
- What are the IP addresses of each block allocated above?
 - In prefix length notation
 - Netmasks in decimal
 - IP address ranges
- What blocks are still available (not yet allocated)?
- How big is the largest available block?

Configuring interfaces – *ifconfig*

- ifconfig interface [address_family] address [params]
 - interface: network interface, e.g., eth0
 - options: up, down, netmask mask
 - address: IP address

Examples:

- ifconfig eth0 192.168.2.2; ifconfig eth1 192.168.3.1
- ifconfig eth0
- ifconfig eth0 192.168.2.2 netmask 255.255.255.0
- ifconfig eth0 inet6 2001:db8:bdbd::123 prefixlen 48 alias

IPv6 Addressing

IP version 6

IPv6 designed as successor to IPv4

- Expanded address space
 - Address length quadrupled to 16 bytes (128 bits)
- Header Format Simplification
 - Fixed length, optional headers are daisy-chained
- No checksum at the IP network layer
- No hop-by-hop fragmentation
 - Path MTU discovery
- 64 bits aligned fields in the header
- Authentication and Privacy Capabilities
 - IPsec is mandated
- No more broadcast

IPv4 and IPv6 Header Comparison

IPv4 Header

IPv6 Header

Version	IHL	Type of Service	Tot	al Length	Version	Traffic Class	Flow I	_abel
Ide	entific	cation	Flags	Fragment Offset	Paylo	ad Length	Next	Hon Limit
Time t Live	to	Protocol	Heade	er Checksum	Payload Length Header Ho			
Source Address		Source Address						
	D	estination	Addres	S				
	(Options		Padding				
Field's name kept from IPv4 to IPv6 Fields not kept in IPv6 Name and position changed in IPv6 New field in IPv6				Destinat	ion Address			

Larger Address Space

- IPv4
 - 32 bits
 - = 4,294,967,296 possible addressable devices

IPv6

- 128 bits: 4 times the size in bits
- = 3.4 x 10³⁸ possible addressable devices
- **u** = 340,282,366,920,938,463,463,374,607,431,768,211,456
- $\square \sim 5 \times 10^{28}$ addresses per person on the planet

IPv6 Address Representation

- 16 bit fields in case insensitive colon hexadecimal representation
 - 2031:0000:130F:0000:0000:09C0:876A:130B
- Leading zeros in a field are optional:
 - 2031:0:130F:0:0:9C0:876A:130B
- Successive fields of 0 represented as ::, but only once in an address:
 - 2031:0:130F::9C0:876A:130B ← is ok

2031::130F::9C0:876A:130B

is NOT ok (two "::")

 $0:0:0:0:0:0:0:1 \rightarrow ::1$

 $0:0:0:0:0:0:0:0 \rightarrow ::$

(loopback address) (unspecified address)

IPv6 Address Representation

In a URL, it is enclosed in brackets (RFC3986)

- http://[2001:db8:4f3a::206:ae14]:8080/index.html
- Cumbersome for users
- Mostly for diagnostic purposes
- Use fully qualified domain names (FQDN) instead of this

Prefix Representation

- Representation of prefix is same as for IPv4 CIDR
 Address and then prefix length, with slash separator
- IPv4 address:

198.10.0.0/16

- IPv6 address:
 - 2001:db8:12::/40

IPv6 Addressing

Туре	Binary	Hex
Unspecified	00000000	::/128
Loopback	00000001	::1/128
Global Unicast Address	0010	2000::/3
Link Local Unicast Address	1111 1110 10	FE80::/10
Unique Local Unicast Address	1111 1100 1111 1101	FC00::/7
Multicast Address	1111 1111	FF00::/8

IPv6 Global Unicast Addresses

IPv6 Global Unicast addresses are:

- Addresses for generic use of IPv6
- Hierarchical structure intended to simplify aggregation

IPv6 Address Allocation

The allocation process is:

- The IANA is allocating out of 2000::/3 for initial IPv6 unicast use
- Each registry gets a /12 prefix from the IANA
- Registry allocates a /32 prefix (or larger) to an IPv6 ISP
- ISPs usually allocate a /48 prefix to each end customer

IPv6 Addressing Scope

- **64** bits used for the interface ID
 - Possibility of 2⁶⁴ hosts on one network LAN
 - Arrangement to accommodate MAC addresses within the IPv6 address
- 16 bits used for the end site
 - Possibility of 2¹⁶ networks at each end-site
 - 65536 subnets

IPV6 Subnetting

2001:0db8:0000:0000:0000:0000:0000:0000

Nibble (4 bits) Concept

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	а
11	1011	b
12	1100	С
13	1101	d
14	1110	е
15	1111	f

2001:0db8::/32			
2001:0db8:0000::/48	2001:0db8:0100::/48	2001:0db8:0200::/48	2001:0db8:0300::/48
2001:0db8:0001::/48	2001:0db8:0101::/48	2001:0db8:0201::/48	2001:0db8:0301::/48
2001:0db8:0002::/48	2001:0db8:0102::/48	2001:0db8:0202::/48	2001:0db8:0302::/48
2001:0db8:0003::/48	2001:0db8:0103::/48	2001:0db8:0203::/48	2001:0db8:0303::/48
2001:0db8:0004::/48	2001:0db8:0104::/48	2001:0db8:0204::/48	2001:0db8:0304::/48
2001:0db8:0005::/48	2001:0db8:0105::/48	2001:0db8:0205::/48	2001:0db8:0305::/48
2001:0db8:0006::/48	2001:0db8:0106::/48	2001:0db8:0206::/48	2001:0db8:0306::/48
2001:0db8:0007::/48	2001:0db8:0107::/48	2001:0db8:0207::/48	2001:0db8:0307::/48
2001:0db8:0008::/48	2001:0db8:0108::/48	2001:0db8:0208::/48	2001:0db8:0308::/48
2001:0db8:0009::/48	2001:0db8:0109::/48	2001:0db8:0209::/48	2001:0db8:0309::/48
2001:0db8:000a::/48	2001:0db8:010a::/48	2001:0db8:020a::/48	2001:0db8:030a::/48
2001:0db8:000b::/48	2001:0db8:010b::/48	2001:0db8:020b::/48	2001:0db8:030b::/48
2001:0db8:000c**/48	2001:0db8:010c::/48	2001:0db8:020c::/48	2001:0db8:030c::/48
2001:0db8:000d··/48	2001:0db8:010d/48	2001:0db8:020d/48	2001:0db8:030d··/48
2001:0db8:000e://48	2001:0db8:010e**/48	2001:0db8:020e::/48	2001:0db8:030e··/48
2001:0db8:000f://48	2001:0db8:010f://48	2001:0db8:020f::/48	2001-0db8-030f/48
2001-0db8-0010/48	2001:0db8:0110://48	2001:0db8:0210::/48	2001-0db8-0310/48
2001:0db8:0011::/48	2001:0db8:0111::/48	2001:0db8:0211::/48	2001:0db8:0311::/48
2001.0db8.0012/48	2001:0db8:0112/48	2001:0db8:0212/48	2001-0db8-0312/48
2001:0db8:0013/48	2001:0db8:0113::/48	2001:0db8:0213::/48	2001-0db8-0313/48
2001:0db8:0014::/48	2001:0db8:0114::/48	2001:0db8:0214::/48	2001:0db8:0314::/48
2001:0db8:0015::/48	2001:0db8:0115::/48	2001:0db8:0215::/48	2001:0db8:0315::/48
2001:0db8:0016::/48	2001:0db8:0116::/48	2001:0db8:0216::/48	2001:0db8:0316::/48
2001:0db8:0017::/48	2001:0db8:0117::/48	2001:0db8:0217::/48	2001:0db8:0317::/48
2001:0db8:0018::/48	2001:0db8:0118::/48	2001:0db8:0218::/48	2001:0db8:0318::/48
2001:0db8:0019::/48	2001:0db8:0119::/48	2001:0db8:0219::/48	2001:0db8:0319::/48
2001:0db8:001a::/48	2001:0db8:011a::/48	2001:0db8:021a::/48	2001:0db8:031a::/48
2001:0db8:001b::/48	2001:0db8:011b::/48	2001:0db8:021b::/48	2001:0db8:031b::/48
2001:0db8:001c::/48	2001:0db8:011c::/48	2001:0db8:021c::/48	2001:0db8:031c::/48
2001:0db8:001d::/48	2001:0db8:011d::/48	2001:0db8:021d::/48	2001:0db8:031d::/48
2001:0db8:001e::/48	2001:0db8:011e::/48	2001:0db8:021e::/48	2001:0db8:031e::/48
2001:0db8:001f::/48	2001:0db8:011f::/48	2001:0db8:021f::/48	2001:0db8:031f::/48
2001:0db8:0020::/48	2001:0db8:0120::/48	2001:0db8:0220::/48	2001:0db8:0320::/48
2001:0db8:0021::/48	2001:0db8:0121::/48	2001:0db8:0221::/48	2001:0db8:0321::/48
2001:0db8:0022::/48	2001:0db8:0122::/48	2001:0db8:0222::/48	2001:0db8:0322::/48
2001:0db8:0023::/48	2001:0db8:0123::/48	2001:0db8:0223::/48	2001:0db8:0323::/48
2001:0db8:0024::/48	2001:0db8:0124::/48	2001:0db8:0224::/48	2001:0db8:0324::/48
2001:0db8:0025::/48	2001:0db8:0125::/48	2001:0db8:0225::/48	2001:0db8:0325::/48
2001:0db8:0026::/48	2001:0db8:0126::/48	2001:0db8:0226::/48	2001:0db8:0326::/48
2001:0db8:0027::/48	2001:0db8:0127::/48	2001:0db8:0227::/48	2001:0db8:0327::/48
2001:0db8:0028::/48	2001:0db8:0128::/48	2001:0db8:0228::/48	2001:0db8:0328::/48
2001:0db8:0029::/48	2001:0db8:0129::/48	2001:0db8:0229::/48	2001:0db8:0329::/48
2001:0db8:002a::/48	2001:0db8:012a::/48	2001:0db8:022a::/48	2001:0db8:032a::/48
2001:0db8:002b::/48	2001:0db8:012b::/48	2001:0db8:022b::/48	2001:0db8:032b::/48
2001:0db8:002c::/48	2001:0db8:012c::/48	2001:0db8:022c::/48	2001:0db8:032c::/48
2001:0db8:002d::/48	2001:0db8:012d::/48	2001:0db8:022d::/48	2001:0db8:032d::/48
2001:0db8:002e::/48	2001:0db8:012e::/48	2001:0db8:022e::/48	2001:0db8:032e::/48
2001:0db8:002f::/48	2001:0db8:012f::/48	2001:0db8:022f::/48	2001:0db8:032f::/48
2001:0db8:0030::/48	2001:0db8:0130::/48	2001:0db8:0230::/48	2001:0db8:0330::/48
2001:0db8:0031::/48	2001:0db8:0131::/48	2001:0db8:0231::/48	2001:0db8:0331::/48
	· · · · · · · · · · · · · · · · · · ·		

-

Summary

- Vast address space
- Hexadecimal addressing
- Distinct addressing hierarchy between ISPs, end-sites, and LANs
 - ISPs have /32s
 - End-sites have /48s
 - LANs have /64s
- Other IPv6 features discussed later

Large Network Issues & Routers

The need for Packet Forwarding

- Many small networks can be interconnected to make a larger internetwork
- A device on one network cannot send a packet directly to a device on another network
- The packet has to be forwarded from one network to another, through intermediate nodes, until it reaches its destination
- The intermediate nodes are called "routers"

An IP Router

- A device with more than one link-layer interface
- Different IP addresses (from different subnets) on different interfaces
- Receives packets on one interface, and forwards them (usually out of another interface) to get them one hop closer to their destination
- Maintains forwarding tables

IP router - action for each packet

- Packet is received on one interface
- Checks whether the destination address is the router itself if so, pass it to higher layers
- Decrement TTL (time to live), and discard packet if it reaches zero
- Look up the destination IP address in the forwarding table
- Destination could be on a directly attached link, or through another router

Forwarding vs. Routing

- Forwarding: the process of moving packets from input to output
 - The forwarding table
 - Information in the packet
- Routing: process by which the forwarding table is built and maintained
 - One or more routing protocols
 - Procedures (algorithms) to convert routing info to forwarding table.
- (Much more later ...)

Forwarding is hop by hop

- Each router tries to get the packet one hop closer to the destination
- Each router makes an independent decision, based on its own forwarding table
- Different routers have different forwarding tables and make different decisions
 - If all is well, decisions will be consistent
- Routers talk routing protocols to each other, to help update routing and forwarding tables

Hop by Hop Forwarding

Router Functions

Determine optimum routing paths through a network

- Lowest delay
- Highest reliability
- Move packets through the network
 - Examines destination address in packet
 - Makes a decision on which port to forward the packet through
 - Decision is based on the Routing Table
- Interconnected Routers exchange routing tables in order to maintain a clear picture of the network
- In a large network, the routing table updates can consume a lot of bandwidth
 - a protocol for route updates is required

Forwarding table structure

- We don't list every IP number on the Internet the table would be huge
- Instead, the forwarding table contains prefixes (network numbers)
 - If the first /n bits matches this entry, send the datagram thataway"
- If more than one prefix matches, the longest prefix wins (more specific route)
- 0.0.0/0 is "default route" matches anything, but only if no other prefix matches

Encapsulation Reminder

Lower layers add headers (and sometimes trailers) to data from higher layers

Ethernet Essentials

- Ethernet is a broadcast medium
- Structure of Ethernet frame:

Preamble	Dest	Source	Length	Туре	Data	CRC
----------	------	--------	--------	------	------	-----

- Entire IP packet makes data part of Ethernet frame
- Delivery mechanism (CSMA/CD)
 - back off and try again when collision is detected

Ethernet/IP Address Resolution

Internet Address

- Unique worldwide (excepting private nets)
- Independent of Physical Network technology
- Ethernet Address
 - Unique worldwide (excepting errors)
 - Ethernet Only
- Need to map from higher layer to lower (i.e. IP to Ethernet, using ARP)

Address Resolution Protocol

ARP is only used in IPv4

- ND (Neighbor Discovery) replaces ARP in IPv6
- Check ARP cache for matching IP address
- If not found, broadcast packet with IP address to every host on Ethernet
- "Owner" of the IP address responds
- Response cached in ARP table for future use
- Old cache entries removed by timeout

ARP Procedure

ARP Table

IP Address	Hardware Address	Age (Sec)
192.168.0.2	08-00-20-08-70-54	3
192.168.0.65	05-02-20-08-88-33	120
192.168.0.34	07-01-20-08-73-22	43

Types of ARP Messages

- ARP request
 - Who is IP addr X.X.X.X tell IP addr Y.Y.Y.Y
- ARP reply
 - IP addr X.X.X.X is Ethernet Address hh:hh:hh:hh:hh