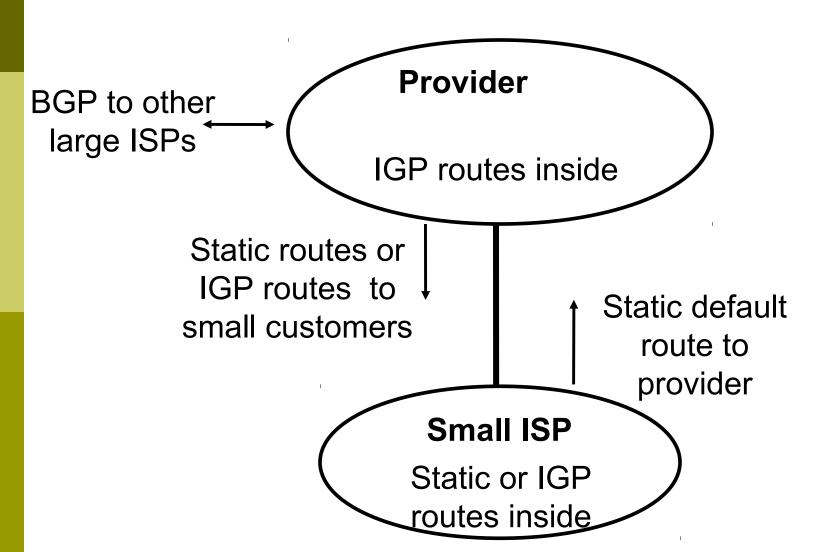
Border Gateway Protocol Introduction

Scalable Infrastructure
Workshop
AfNOG 2011

Border Gateway Protocol (BGP4)

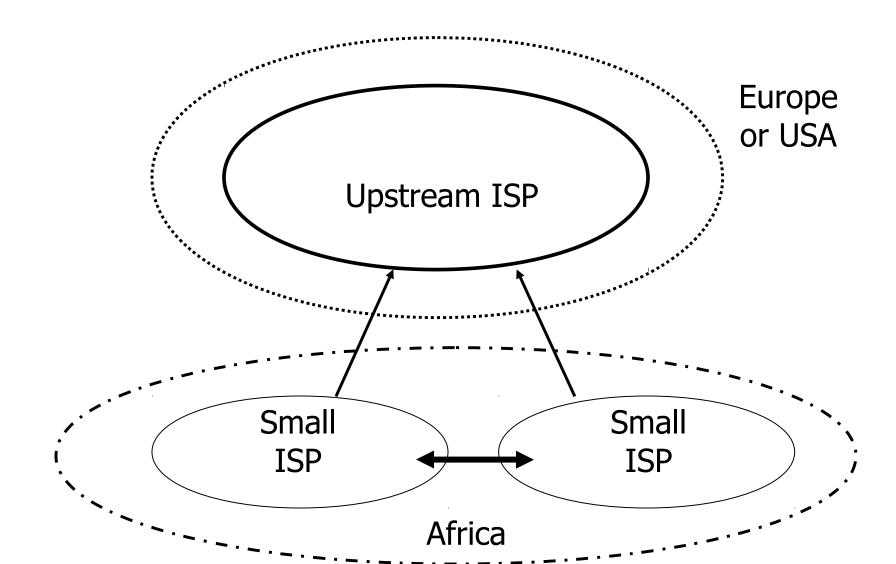
- □ Part 0: Why use BGP?
- Part 1: Forwarding and Routing (review)
- Part 2: Interior and Exterior Routing
- Part 3: BGP Building Blocks
- Part 4: Configuring BGP
- Part 5: Introducing IPv6


BGP Part 0

Why use BGP?

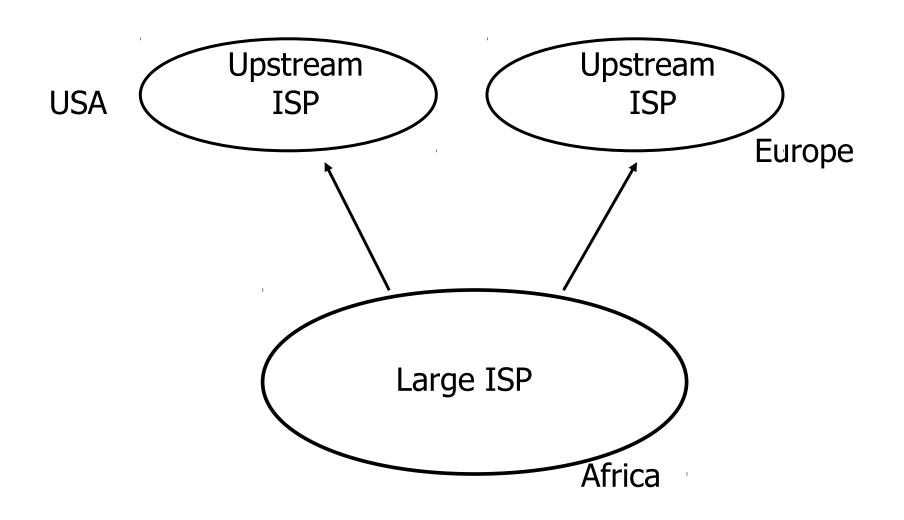
Consider a typical small ISP

- Local network in one country
- May have multiple POPs in different cities
- Line to Internet
 - International line providing transit connectivity
 - Very, very expensive international line
- Doesn't yet need BGP


Small ISP with one upstream provider

What happens with other ISPs in the same country

- Similar setup
- Traffic between you and them goes over
 - Your expensive line
 - Their expensive line
- Traffic can be significant
 - Your customers want to talk to their customers
 - Same language/culture
 - Local email, discussion lists, web sites


Keeping Local Traffic Local

Consider a larger ISP with multiple upstreams

- Large ISP multi-homes to two or more upstream providers
 - multiple connections
 - to achieve:
 - redundancy
 - connection diversity
 - increased speeds
 - Use BGP to choose a different upstream for different destination addresses

A Large ISP with more than one upstream provider

Terminology: "Policy"

- Where do you want your traffic to go?
 - It is difficult to get what you want, but you can try
- Control of how you accept and send routing updates to neighbours
 - Prefer cheaper connections
 - Prefer connections with better latency
 - Load-sharing, etc

"Policy" (continued)

- Implementing policy:
 - Accepting routes from some ISPs and not others
 - Sending some routes to some ISPs and not to others
 - Preferring routes from some ISPs over those from other ISPs

"Policy" Implementation

- You want to use a local line to talk to the customers of other local ISPs
 - local peering
- You do not want other local ISPs to use your expensive international lines
 - no free transit!
- So you need some sort of control over routing policies
- BGP can do this

Terminology: "Peering" and "Transit"

- Peering: getting connectivity to the network of other ISPs
 - ... and just that network, no other networks
 - Usually at zero cost (zero-settlement)
- Transit: getting connectivity though the other ISP to other ISP networks
 - ... getting connectivity to rest of world (or part thereof)
 - Usually at cost (customer-provider relationship)

Terminology: "Aggregation"

- Combining of several smaller blocks of address space into a larger block
- For example:
 - 192.168.4.0/24 and 192.168.5.0/24 are contiguous address blocks
 - They can be combined and represented as 192.168.4.0/23...
 - ...with no loss of information!

"Aggregation" (continued)

- Useful because it hides detailed information about the local network:
 - The outside world needs to know about the range of addresses in use
 - The outside world does **not** need to know about the small pieces of address space used by different customers inside your network

"Aggregation" (continued)

- Aggregation is very necessary when using BGP to "talk" to the Internet
- Saves memory and CPU for routing calculations
- Saves bandwidth for BGP announcements
- Some providers may filter (ignore) deaggregated route announcements
- But deaggregation may be useful for traffic engineering

Summary: Why do I need BGP?

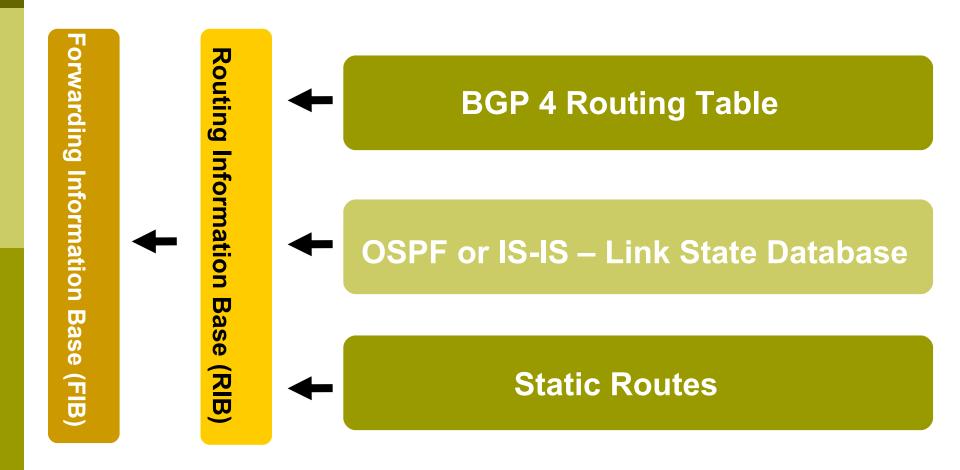
- Multi-homing connecting to multiple providers
 - upstream providers
 - local networks regional peering to get local traffic
- Policy discrimination
 - controlling how traffic flows
 - do not accidentally provide transit to noncustomers

BGP Part 1

Forwarding and Routing

Routing versus Forwarding

- Routing = building maps and giving directions
- Forwarding = moving packets between interfaces according to the "directions"


Routing Table/RIB

- Routing table is managed by a routing protocol (e.g. OSPF or BGP)
- Often called the RIB Routing Information Base
- Each routing protocol has its own way of managing its own routing tables
- Each routing protocol has a way of exchanging information between routers using the same protocol

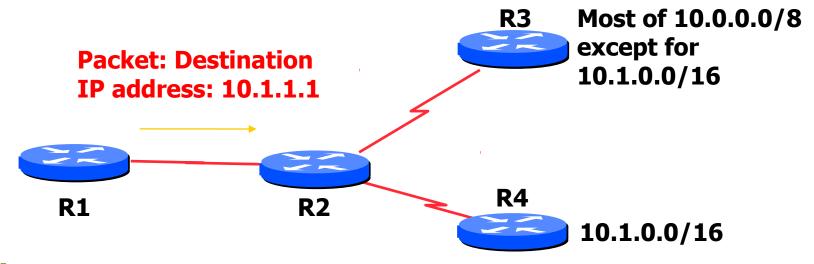
Forwarding Table/FIB

- Forwarding table determines how packets are sent through the router
- Often called the FIB Forwarding Information Base
- Made from routing table built by routing protocols
 - Best routes from routing tables are installed
- Performs the lookup to find next-hop and outgoing interface
- Switches the packet with new encapsulation as per the outgoing interface

Routing Tables Feed the Forwarding Table

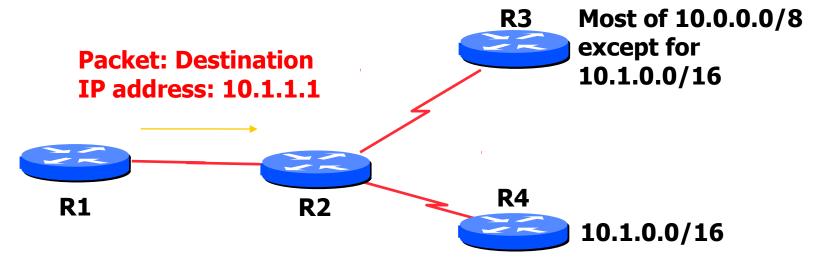
IP Routing

- Each router or host makes its own routing decisions
- Sending machine does not have to determine the entire path to the destination
- Sending machine just determines the next-hop along the path (based on destination IP address)
 - This process is repeated until the destination is reached, or there's an error
- Forwarding table is consulted (at each hop) to determine the next-hop

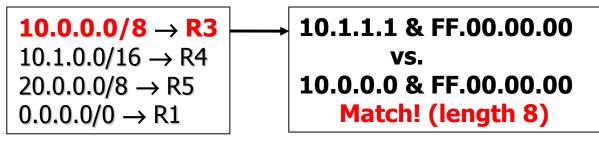

IP Routing

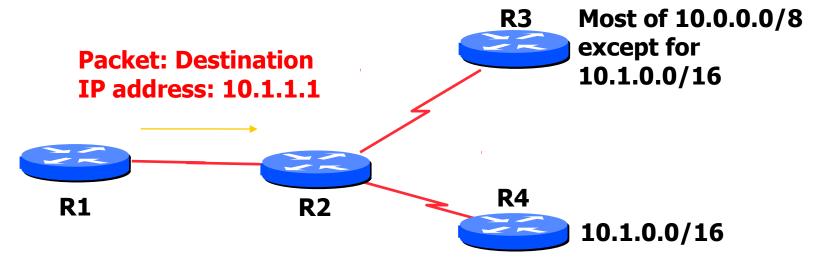
- Classless routing
 - route entries include
 - destination
 - next-hop
 - mask (prefix-length) indicating size of address space described by the entry
- Longest match
 - for a given destination, find longest prefix match in the routing table
 - example: destination is 35.35.66.42
 - routing table entries are 35.0.0.0/8, 35.35.64.0/19 and 0.0.0.0/0
 - All these routes match, but the /19 is the longest match

IP routing

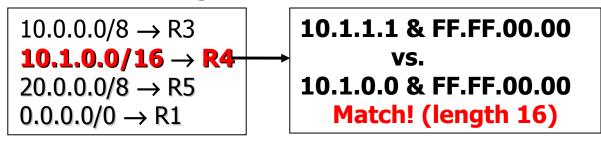

Default route

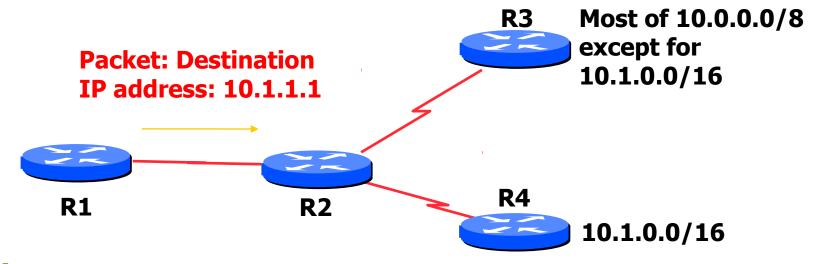
- where to send packets if there is no entry for the destination in the routing table
- most machines have a single default route
- often referred to as a default gateway
- **0.0.0.0/0**
 - matches all possible destinations, but is usually not the longest match

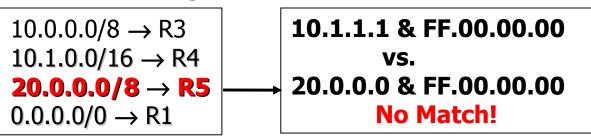


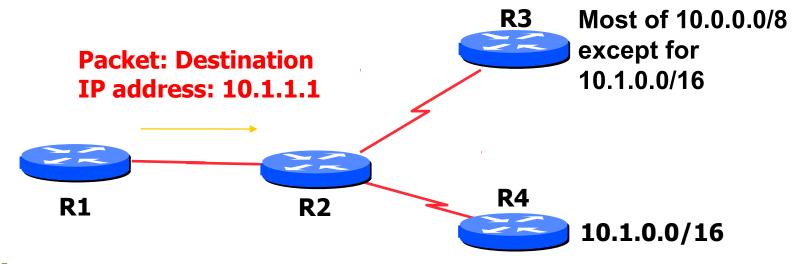

Based on destination IP address

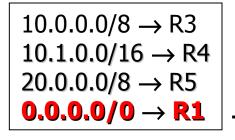
$$\begin{array}{c} \textbf{10.0.0.0/8} \rightarrow \textbf{R3} \\ \textbf{10.1.0.0/16} \rightarrow \textbf{R4} \\ \textbf{20.0.0.0/8} \rightarrow \textbf{R5} \\ \textbf{0.0.0.0/0} \rightarrow \textbf{R1} \end{array}$$

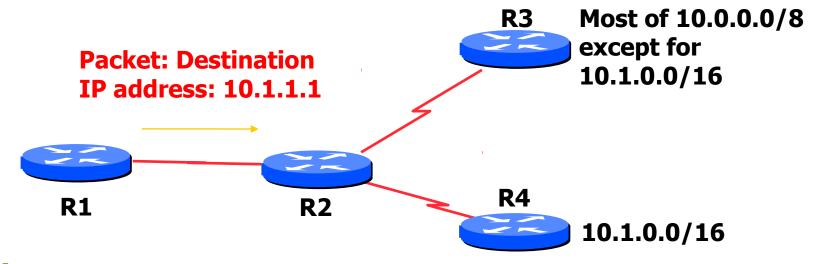



Based on destination IP address

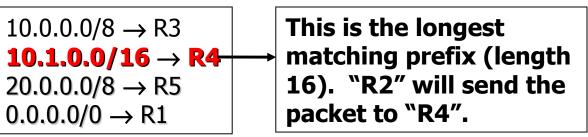



Based on destination IP address


Based on destination IP address


Based on destination IP address

R2's IP forwarding table



10.1.1.1 & 00.00.00.00 vs. 0.0.0.0 & 00.00.00.00

Match! (length 0)

Based on destination IP address

- Most specific/longest match always wins!!
 - Many people forget this, even experienced ISP engineers
- Default route is 0.0.0.0/0
 - Can handle it using the normal longest match algorithm
 - Matches everything. Always the shortest match.

Static vs. Dynamic routing

- Static routes
 - Set up by administrator
 - Changes need to be made by administrator
 - Only good for small sites and star topologies
 - Bad for every other topology type

- Dynamic routes
 - Provided by routing protocols
 - Changes are made automatically
 - Good for network topologies which have redundant links (most!)

Dynamic Routing

- Routers compute routing tables dynamically based on information provided by other routers in the network
- Routers communicate topology to each other via different protocols
- Routers then compute one or more next hops for each destination – trying to calculate the most optimal path
- Automatically repairs damage by choosing an alternative route (if there is one)

BGP Part 2

Interior and Exterior Routing

Interior vs. Exterior Routing Protocols

- Interior gateway protocol (IGP)
 - Automatic neighbour discovery
 - Under control of a single organisation
 - Generally trust your IGP routers
 - Routes go to all IGP routers
 - Usually not filtered

- Exterior gateway protocol (EGP)
 - Specifically configured peers
 - Connecting with outside networks
 - Neighbours are not trusted
 - Set administrative boundaries
 - Filters based on policy

IGP

- Interior Gateway Protocol
- Within a network/autonomous system
- Carries information about internal prefixes
- Examples OSPF, ISIS, EIGRP, RIP

EGP

- Exterior Gateway Protocol
- Used to convey routing information between networks/ASes
- De-coupled from the IGP
- Current EGP is BGP4

Why Do We Need an EGP?

- Scaling to large network
 - Hierarchy
 - Limit scope of failure
- Define administrative boundary
- Policy
 - Control reachability to prefixes

Scalability and policy issues

- Just getting direct line is not enough
- Need to work out how to do routing
 - Need to get local traffic between ISP's/peers
 - Need to make sure the peer ISP doesn't use us for transit
 - Need to control what networks to announce, what network announcements to accept to upstreams and peers

Scalability: Not using static routes

- p ip route their_net their_gw
- Does not scale
- Millions of networks around the world

Scalability: Not using IGP (OSPF/ISIS)

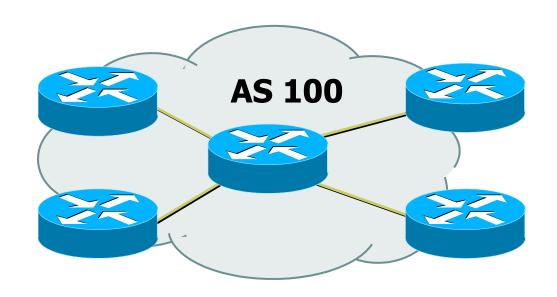
- Serious operational consequences:
 - If the other ISP has a routing problem, you will have problems too
 - Your network prefixes could end up in the other ISP's network — and vice-versa
 - Very hard to filter routes so that we don't inadvertently give transit

Using BGP instead

- BGP = Border Gateway Protocol
- BGP is an exterior routing protocol
- Focus on routing **policy**, not topology
- BGP can make 'groups' of networks (Autonomous Systems)
- Good route filtering capabilities
- Ability to isolate from others' problems

Border Gateway Protocol

- A Routing Protocol used to exchange routing information between networks
 - exterior gateway protocol
- Described in RFC4271
 - RFC4276 gives an implementation report on BGP-4
 - RFC4277 describes operational experiences using BGP-4
- The Autonomous System is BGP's fundamental operating unit
 - It is used to uniquely identify networks with a common routing policy


BGP Part 3

BGP Building Blocks

BGP Building Blocks

- Autonomous System (AS)
- Types of Routes
- IGP/EGP
- DMZ
- Policy
- Egress
- Ingress

Autonomous System (AS)

- Collection of networks with same policy
- Single routing protocol
- Usually under single administrative control
- IGP to provide internal connectivity

Autonomous System (AS)

- Autonomous systems is a misnomer
 - Not much to do with freedom, independence,
- Just a handle for a group of networks that is under the same administrative control
- Identified by an AS number

Autonomous System (AS)

- Identified by 'AS number'
 - example: AS16907 (ISPKenya)
- Examples:
 - Service provider
 - Multi-homed customers
 - Anyone needing policy discrimination for networks with different routing policies
- Single-homed network (one upstream provider) does not need an AS number
 - Treated like part of upstream AS

Autonomous System Number (ASN)

- Two ranges
 - 0-65535 (original 16-bit range)
 - 65536-4294967295 (32-bit range RFC4893)
- Usage:
 - 0 and 65535 (reserved)
 - 1-64495 (public Internet)
 - 64496-64511 (documentation RFC5398)
 - 64512-65534 (private use only)
 - 23456 (represent 32-bit range in 16-bit world)
 - 65536-65551 (documentation RFC5398)
 - 65552-4294967295 (public Internet)
- 32-bit range representation specified in RFC5396
 - Defines "asplain" (traditional format) as standard notation

Configuring BGP in IOS

- This command enables BGP in IOS for AS100:
 - router bgp 100
- For ASNs > 65535, the AS number can be entered in either plain notation, or in dot notation:

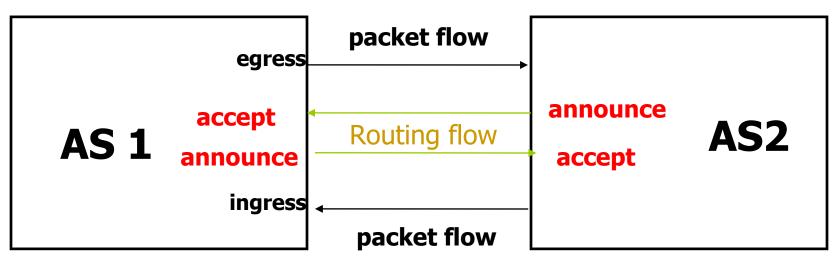
```
router bgp 131076
or
router bgp 2.4
```

- IOS will display ASNs in plain notation by default
 - Dot notation is optional:

```
router bgp 2.4 bgp asnotation dot
```

Router Support for 4-byte ASNs

- Most vendors now support 4-byte ASNs in their routing software
- A complete list is at:
 - http://as4.cluepon.net


Autonomous System Number (ASN)

- ASNs are distributed by the Regional Internet Registries
 - They are also available from upstream ISPs who are members of one of the RIRs
- Current 16-bit ASN allocations up to 55295 have been made to the RIRs
 - Around 34200 are visible on the Internet (as of 2009)
- The RIRs also have received 1024 32-bit ASNs each
 - 580 have been assigned, but only 100 are visible on the Internet (as of 2009) (early adopters)
- See www.iana.org/assignments/as-numbers

Using AS numbers

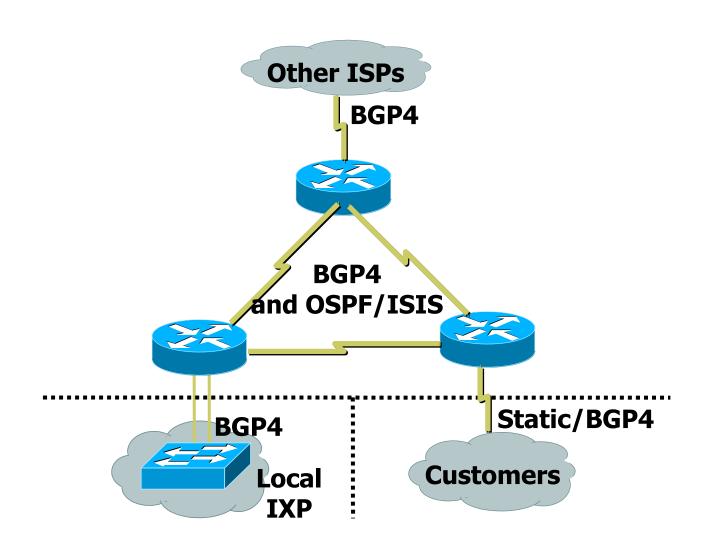
- BGP can filter on AS numbers
 - Get all networks of the other ISP using one handle
 - Include future new networks without having to change routing filters
 - AS number for new network will be same
 - Can use AS numbers in filters with regular expressions
- BGP actually does routing computation on IP numbers

Routing flow and packet flow

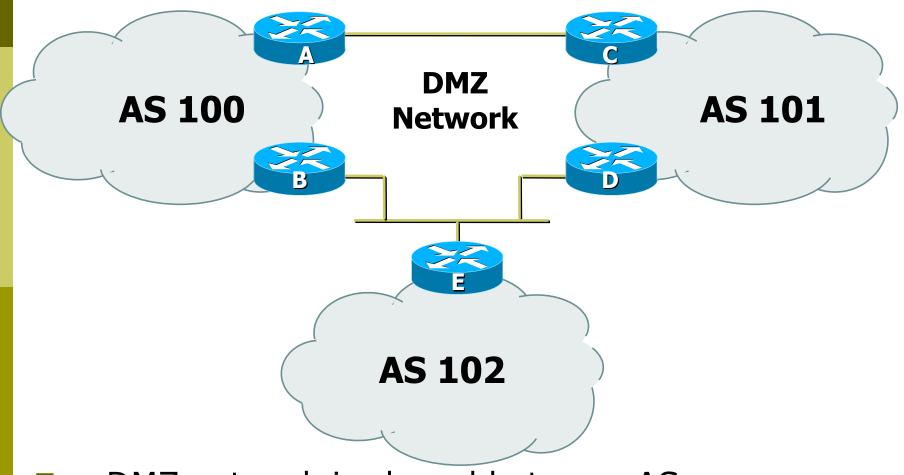
- For networks in AS1 and AS2 to communicate:
 - AS1 must announce routes to AS2
 - AS2 must accept routes from AS1
 - AS2 must announce routes to AS1
 - AS1 must accept routes from AS2

Egress Traffic

- Packets exiting the network
- Based on:
 - Route availability (what others send you)
 - Route acceptance (what you accept from others)
 - Policy and tuning (what you do with routes from others)
 - Peering and transit agreements


Ingress Traffic

- Packets entering your network
- Ingress traffic depends on:
 - What information you send and to whom
 - Based on your addressing and ASes
 - Based on others' policy (what they accept from you and what they do with it
 - Difficult for you to influence what others choose to do, so load balancing ingress traffic is difficult


Types of Routes

- Static Routes
 - configured manually
- Connected Routes
 - created automatically when an interface is 'up'
- Interior Routes
 - Routes within an AS
 - learned via IGP (e.g. OSPF)
- Exterior Routes
 - Routes exterior to AS
 - learned via EGP (e.g. BGP)

Hierarchy of Routing Protocols

DMZ (De-Militarised Zone)

DMZ network is shared between ASes

Basics of a BGP route

- Seen from output of "show ip bgp"
- Prefix and mask what IP addresses are we talking about?
 - 192.168.0.0/16 or 192.168.0.0/255.255.0.0
- Origin How did the route originally get into BGP?
 - "?" incomplete, "e" EGP, "i" IGP
- AS Path what ASes did the route go through before it got to us?
 - **1** "701 3561 1"

BGP Part 4

Configuring BGP
Basic commands
Getting routes into BGP

Basic BGP commands

Configuration commands

```
router bgp <AS-number>
no auto-summary
no synchronization
neighbor <ip address> remote-as <as-number>
```

Show commands

```
show ip bgp summary
show ip bgp neighbors
show ip bgp neighbor <ip address>
```

Configuring BGP with 4-byte ASNs

- If both peers support 4-byte ASNs, configuration is as per previously, just larger numbers
- If one peer only supports 2-byte ASNs, use AS23456 as the transition AS
- Old software sees AS23456 instead of the actual 4 byte ASN
 Transition ASN as Router A cannot configure AS70000 directly
 - Router A:

```
router bgp 100 neighbor 1.1.1.1 remote-as 23456
```

Router B:

```
router bgp 70000
neighbor 1.1.1.2 remote-as 100
```

Inserting prefixes into BGP

- Two main ways to insert prefixes into BGP
 - network command
 - redistribute static
- Both require the prefix to be in the routing table

"network" command

Configuration Example

```
router bgp 1
network 105.32.4.0 mask 255.255.254.0
ip route 105.32.4.0 255.255.254.0 serial 0
```

- Matching route must exist in the routing table before network is announced!
- Prefix will have Origin code set to "IGP"

"redistribute static"

Configuration Example:

```
router bgp 1
redistribute static
ip route 105.32.4.0 255.255.254.0 serial0
```

- Static route must exist before redistribute command will work
- Forces origin to be "incomplete"
- Care required!
 - This will redistribute all static routes into BGP
 - Redistributing without using a filter is dangerous;
 you could accidentally get many unwanted routes

"redistribute static"

- Care required with redistribution
 - redistribute <routing-protocol> means everything in the <routing-protocol> will be transferred into the current routing protocol
 - will not scale if uncontrolled
 - best avoided if at all possible
 - redistribute normally used with "route-maps" and under tight administrative control
 - "route-map" is used to apply policies in BGP, so is a kind of filter

Aggregates and Null0

Remember: matching route must exist in routing table before it will be announced by BGP

```
router bgp 1
network 105.32.0.0 mask 255.255.0.0
ip route 105.32.0.0 255.255.0.0 null0 250
```

- Static route to null0 often used for aggregation
 - Packets will be sent here if there is no more specific match in the routing table
 - Distance of 250 ensures last resort
- Often used to nail up routes for stability
 - Can't flap! ②

BGP Part 5

Introducing IPv6

Adding IPv6 to BGP...

RFC4760

- Defines Multi-protocol Extensions for BGP4
- Enables BGP to carry routing information of protocols other than IPv4
 - □ e.g. MPLS, IPv6, Multicast etc
- Exchange of multiprotocol NLRI must be negotiated at session startup

RFC2545

Use of BGP Multiprotocol Extensions for IPv6 Inter-Domain Routing

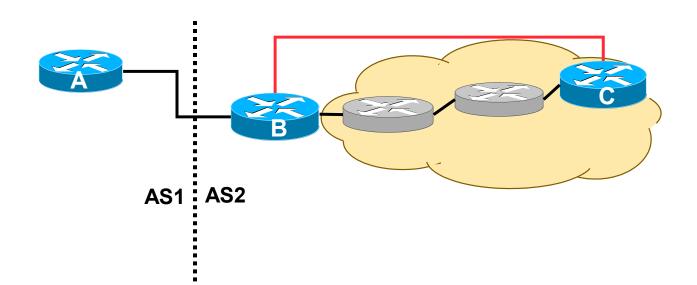
RFC4760

- New optional and non-transitive BGP attributes:
 - MP_REACH_ NLRI (Attribute code: 14)
 - Carry the set of reachable destinations together with the next-hop information to be used for forwarding to these destinations (RFC4760)
 - MP_UNREACH_NLRI (Attribute code: 15)
 - Carry the set of unreachable destinations
- Attribute contains one or more Triples:
 - AFI Address Family Information
 - Next-Hop Information (must be of the same address family)
 - NLRI Network Layer Reachability Information

RFC2545

- IPv6 specific extensions
 - Scoped addresses: Next-hop contains a global IPv6 address and/or potentially a link-local address
 - NEXT_HOP and NLRI are expressed as IPv6 addresses and prefix
 - Address Family Information (AFI) = 2 (IPv6)
 - Sub-AFI = 1 (NLRI is used for unicast)
 - Sub-AFI = 2 (NLRI is used for multicast RPF check)
 - Sub-AFI = 3 (NLRI is used for both unicast and multicast RPF check)
 - Sub-AFI = 4 (label)

BGP Considerations


- Rules for constructing the NEXTHOP attribute:
 - When two peers share a common subnet, the NEXTHOP information is formed by a global address and a link local address
 - Redirects in IPv6 are restricted to the usage of link local addresses

Routing Information

- Independent operation
 - One RIB per protocol
 - e.g. IPv6 has its own BGP table
 - Distinct policies per protocol
- Peering sessions can be shared when the IPv4 and IPv6 topologies are congruent

BGP next-hop attribute

- Next-hop contains a global IPv6 address
 - (and potentially a link local address)
- Link local address is only set as a next-hop if the BGP peer shares the subnet with both routers (advertising and advertised)

More BGP considerations

TCP Interaction

- BGP runs on top of TCP
- This connection could be set up either over IPv4 or IPv6

Router ID

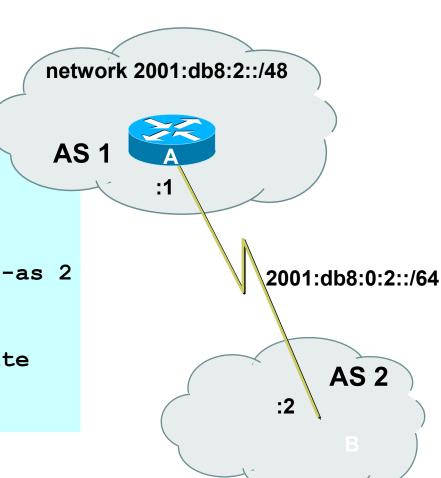
- When no IPv4 is configured, an explicit bgp router-id needs to be configured
 - BGP identifier is a 32 bit integer currently generated from the router identifier – which is generated from an IPv4 address on the router
- This is needed as a BGP identifier, this is used as a tie breaker, and is sent within the OPEN message

BGP Configuration

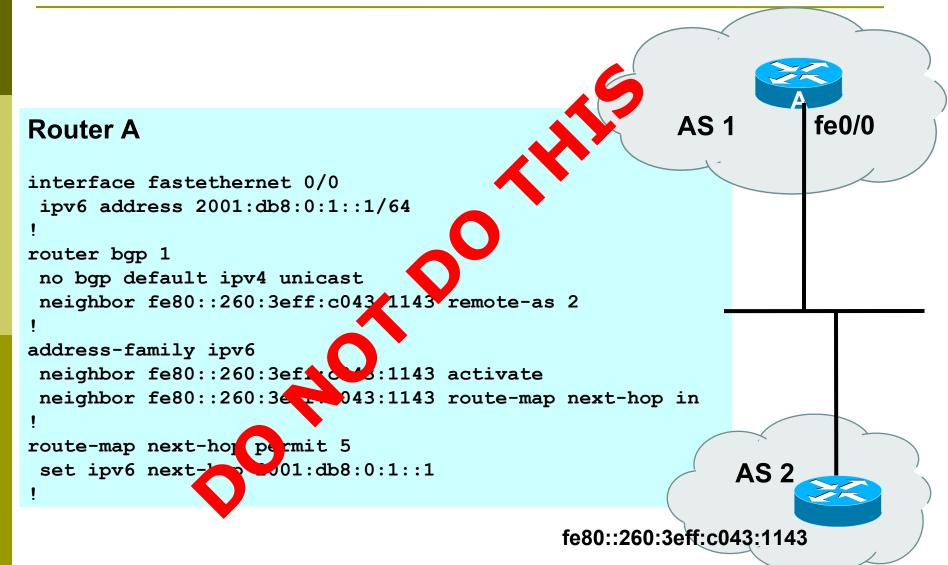
- IOS default is to assume that all configured peers are unicast IPv4 neighbours
 - If we want to support IPv6 too, this isn't useful
 - So we disable the default assumption

```
no bgp default ipv4-unicast
```

This means that we must explicitly state which address family the peer belongs to


BGP Configuration

- Two options for configuring BGP peering
- Using link local addressing
 - ISP uses FE80:: addressing for BGP neighbours
 - NOT RECOMMENDED
 - There are plenty of IPv6 addresses
 - Unnecessary configuration complexity
- Using global unicast addresses
 - As with IPv4
 - RECOMMENDED


Regular BGP Peering

Router A

```
router bgp 1
no bgp default ipv4 unicast
neighbor 2001:db8:0:2::2 remote-as 2
!
  address-family ipv6
  neighbor 2001:db8:0:2::2 activate
  network 2001:db8:2::/48
!
```


Link Local Peering

IPv4 and IPv6

```
router bgp 10
no bgp default ipv4-unicast
neighbor 2001:db8:1:1019::1 remote-as 20
neighbor 172.16.1.2 remote-as 30
address-family ipv4
neighbor 172.16.1.2 activate
neighbor 172.16.1.2 prefix-list ipv4-ebgp in
neighbor 172.16.1.2 prefix-list v4out out
network 172.16.0.0
exit-address-family
address-family ipv6
neighbor 2001:db8:1:1019::1 activate
neighbor 2001:db8:1:1019::1 prefix-list ipv6-ebgp in
neighbor 2001:db8:1:1019::1 prefix-list v6out out
network 2001:db8::/32
exit-address-family
```

BGP Configuration IPv4 and IPv6

- When configuring the router, recommendation is:
 - Put all IPv6 configuration directly into IPv6 address family
 - Put all IPv4 configuration directly into IPv4 address family
- Router will sort generic from specific address family configuration when the configuration is saved to NVRAM or displayed on the console
- Example follows...
 - Notice how activate is required to indicate that the peering is activated for the particular address family

BGP Address Families Applied Configuration

```
router bgp 10
no bgp default ipv4-unicast
                                               Generic Configuration
address family ipv4
neighbor 172.16.1.2 remote-as 30
neighbor 172.16.1.2 prefix-list ipv4-ebgp in
neighbor 172.16.1.2 prefix-list v4out out
neighbor 172.16.1.2 activate
network 172.16.0.0
                                               Specific Configuration
address-family ipv6
neighbor 2001:db8:1:1019::1 remote-as 20
neighbor 2001:db8:1:1019::1 prefix-list ipv6-ebgp in
neighbor 2001:db8:1:1019::1 prefix-list v6out out
neighbor 2001:db8:1:1019::1 activate
network 2001:db8::/32
ip prefix-list ipv4-ebgp permit 0.0.0.0/0 le 32
ip prefix-list v4out permit 172.16.0.0/16
ipv6 prefix-list ipv6-ebgp permit ::/0 le 128
ipv6 prefix-list v6out permit 2001:db8::/32
```

BGP Address Families End result – line order has changed

```
router bgp 10
no bgp default ipv4-unicast
neighbor 2001:db8:1:1019::1 remote-as 20
                                                   Generic Configuration
neighbor 172.16.1.2 remote-as 30
address-family ipv4
neighbor 172.16.1.2 activate
neighbor 172.16.1.2 prefix-list ipv4-ebgp in
                                                  Specific Configuration
neighbor 172.16.1.2 prefix-list v4out out
network 172.16.0.0
exit-address-family
 address-family ipv6
neighbor 2001:db8:1:1019::1 activate
neighbor 2001:db8:1:1019::1 prefix-list ipv6-ebgp in
neighbor 2001:db8:1:1019::1 prefix-list v6out out
network 2001:db8::/32
exit-address-family
ip prefix-list ipv4-ebgp permit 0.0.0.0/0 le 32
ip prefix-list v4out permit 172.16.0.0/16
ipv6 prefix-list ipv6-ebgp permit ::/0 le 128
ipv6 prefix-list v6out permit 2001:db8::/32
```

Summary

- We have learned:
 - Why we use BGP
 - About the difference between Forwarding and Routing
 - About Interior and Exterior Routing
 - What the BGP Building Blocks are
 - How to configure BGP
 - How BGP has been enhanced to support IPv6