Deploying OSPF: A Review for ISPs

AfNOG 2012 AR-E Workshop

Introduction

- This slide set is a reminder of the current best practices when deploying OSPF
- It highlights what ISPs should be doing for any OSPF deployment on their backbone

Agenda

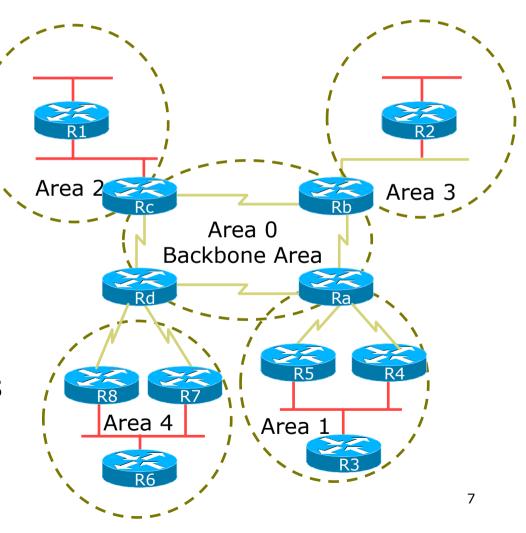
- The OSPFv2 Routing Protocol Highlights
- OSPF Design in SP Networks
- Enabling OSPF on Cisco routers
- OSPF best practice in Cisco's IOS

OSPFv2 Highlights

A high level review

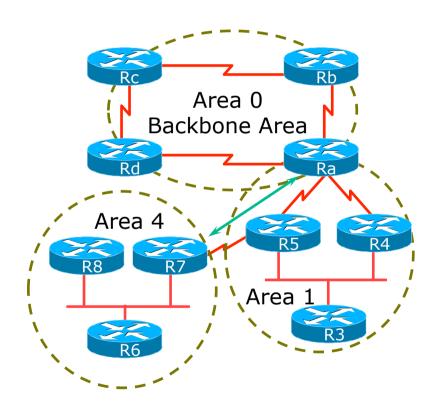
OSPF

- Open Shortest Path First
- Link state or SPF technology
- Developed by OSPF working group of IETF (RFC 1247)
- OSPFv2 standard described in RFC2328

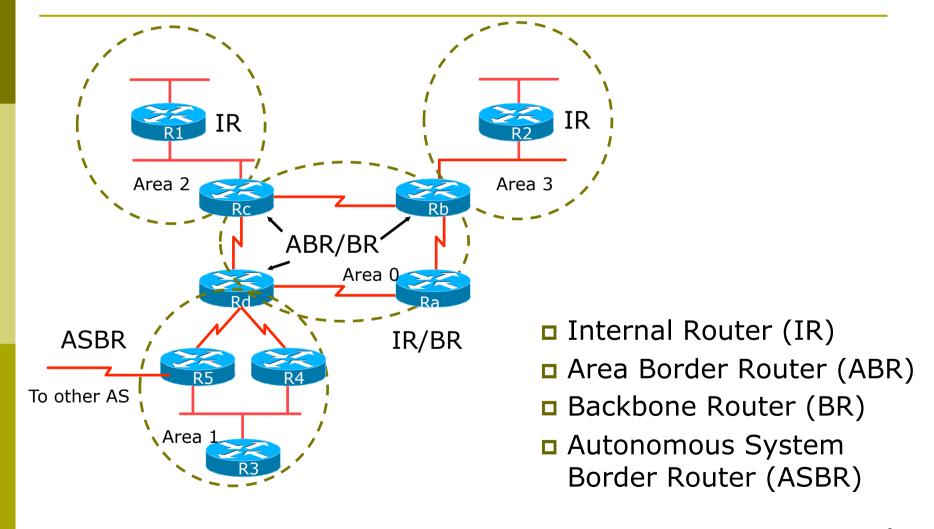

- Designed for:
 - TCP/IP environment
 - Fast convergence
 - Variable-length subnet masks
 - Discontiguous subnets
 - Incremental updates
 - Route authentication
- Runs on IP, Protocol89

OSPF

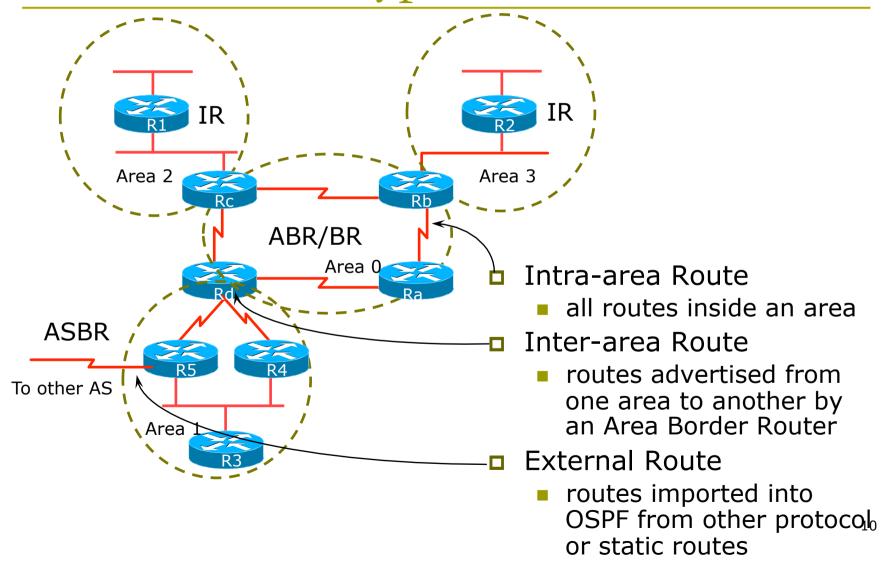
- Link State Routing Protocol
 - Uses Dijkstra Shortest Path First algorithm
 - Automatic Neighbour discovery
 - Incremental updates (Link State Packets)
 - Updates are acknowledgement based
 - Uses multicast on broadcast media
 - Changes in topology result in LSPs flood throughout the network
 - All routers recompute the routing table
 - Employs areas to improve performance, convergence, and limit impact of failures


OSPF Areas

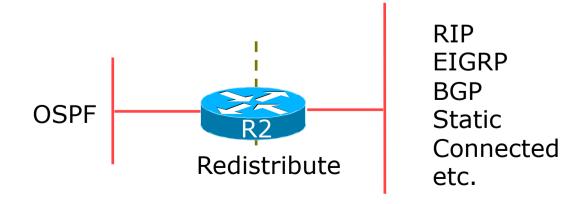
- Area is a group of contiguous hosts and networks
 - Reduces routing traffic
- Per area topology database
 - Invisible outside the area
- Backbone areaMUST be contiguous
 - All other areas must be connected to the backbone



Virtual Links between OSPF Areas


- Virtual Link is used when it is not possible to physically connect the area to the backbone
- ISPs avoid designs which require virtual links
 - Increases complexity
 - Decreases reliability and scalability

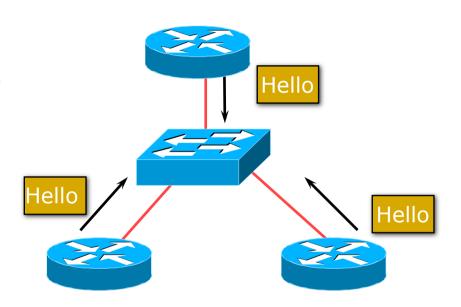
Classification of Routers



OSPF Route Types

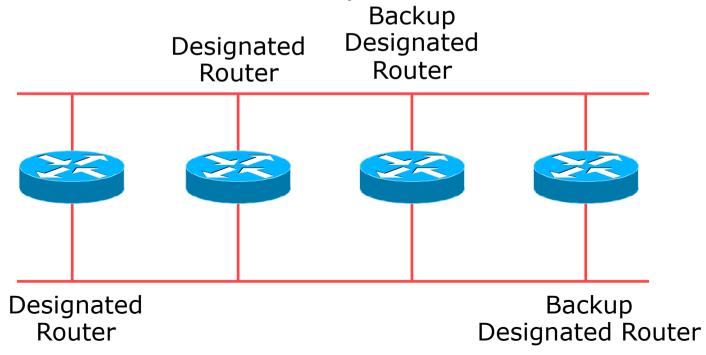
External Routes

- Prefixes which are redistributed into OSPF from other protocols
- Flooded unaltered throughout the AS
 - Strong Recommendation: Avoid redistribution!!
- OSPF supports two types of external metrics
 - Type 1 external metrics
 - Type 2 external metrics (Cisco IOS default)

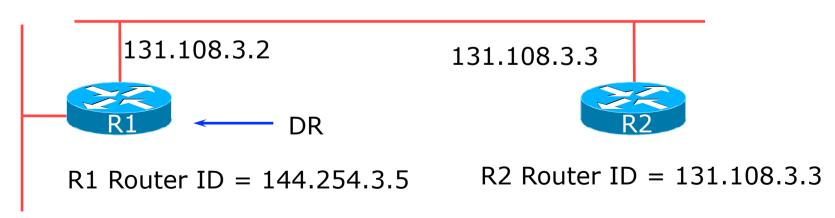


Topology/Link State Database

- A router has a separate LS database for each area to which it belongs
- All routers belonging to the same area have identical database
- SPF calculation is performed separately for each area
- LSA flooding is bounded by area
- Recommendation:
 - Limit the number of areas a router participates in!!
 - 1 to 3 is fine (typical ISP design)
 - >3 can overload the CPU depending on the area topology complexity


The Hello Protocol

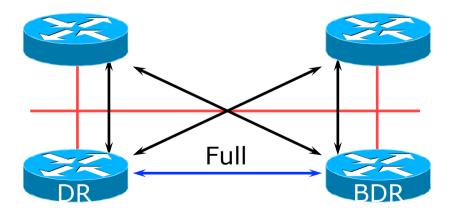
- Responsible for establishing and maintaining neighbour relationships
- Elects designated router on multi-access networks


Designated Router

- There is ONE designated router per multiaccess network
 - Generates network link advertisements
 - Assists in database synchronisation

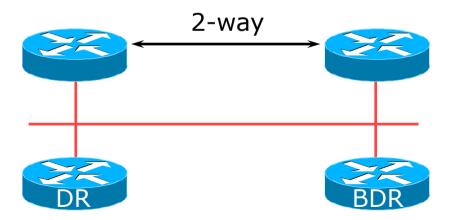
Designated Router by Priority

- Configured priority (per interface)
 - ISPs configure high priority on the routers they want as DR/BDR
- Else determined by highest router ID
 - Router ID is 32 bit integer
 - Derived from the loopback interface address, if configured, otherwise the highest IP address



144.254.3.5

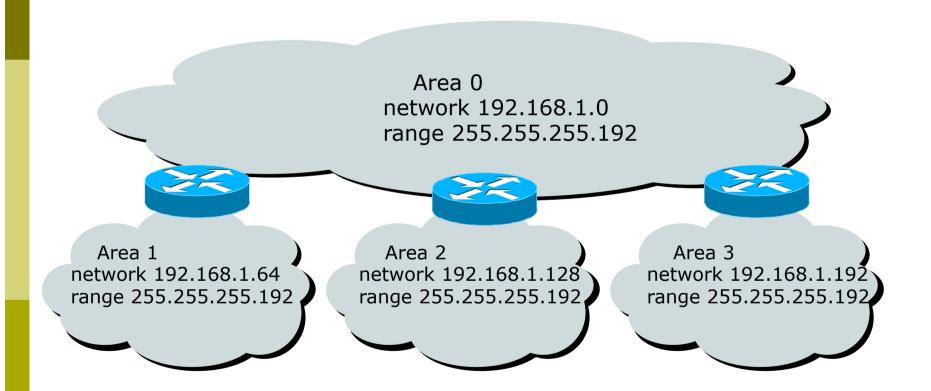
Neighbouring States


Full

- Routers are fully adjacent
- Databases synchronised
- Relationship to DR and BDR

Neighbouring States

- 2-way
 - Router sees itself in other Hello packets
 - DR selected from neighbours in state 2-way or greater


Types of Areas

- Regular
- Stub
- Totally Stubby
- Not-So-Stubby
- Only "regular" areas are useful for ISPs
 - Other area types handle redistribution of other routing protocols into OSPF
 - ISPs don't redistribute anything into OSPF it does NOT scale

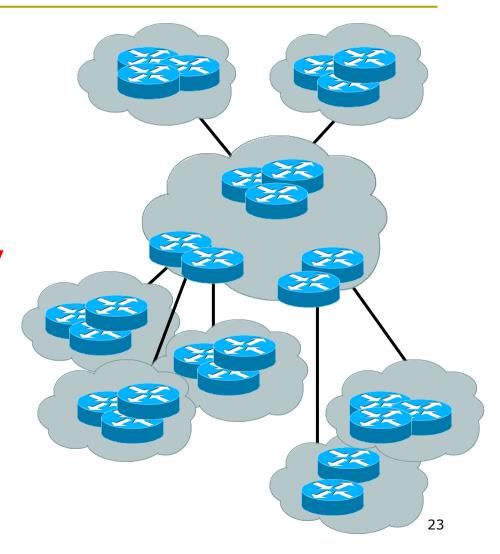
ISP Use of Areas

- □ ISP networks use:
 - Backbone area
 - Regular area
- Backbone area
 - No partitioning
- Regular area
 - Summarisation of point to point link addresses used within areas
 - Loopback addresses allowed out of regular areas without summarisation (otherwise iBGP won't work)

Addressing for Areas

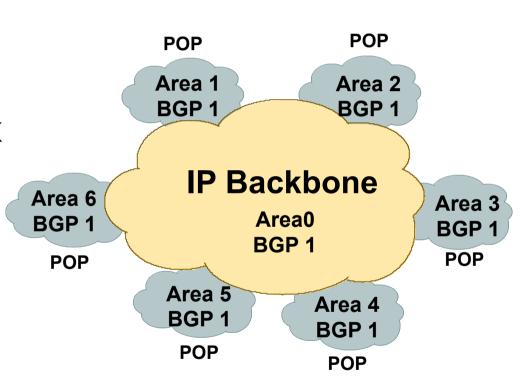
Assign contiguous ranges of subnets per area to facilitate summarisation

Summary

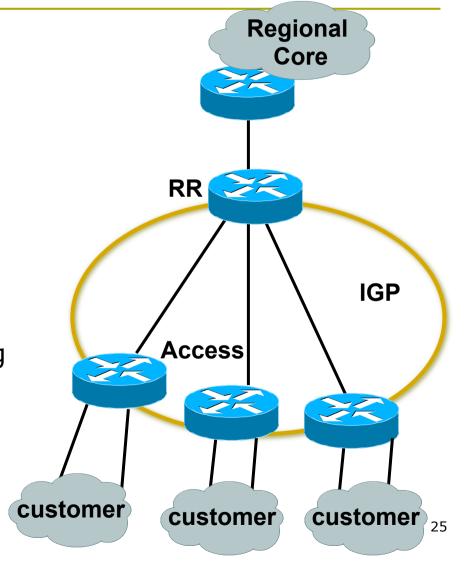

- Fundamentals of Scalable OSPF Network Design
 - Area hierarchy
 - DR/BDR selection
 - Contiguous intra-area addressing
 - Route summarisation
 - Infrastructure prefixes in OSPF only

OSPF Design

As applicable to Service Provider Networks


Service Providers

- SP networks are divided into PoPs
- PoPs are linked by the backbone
- Transit routing information is carried via iBGP
- IGP is only used to carry the next hop for BGP
- Optimal path to the next hop is critical


SP Architecture

- Major routing information is ~400K prefixes via BGP
- Largest known IGP routing table is ~9-10K
- □ Total of 410K
- 10K/410K is 2½% of IGP routes in an ISP network
- A very small factor but has a huge impact on network convergence!

SP Architecture

- You can reduce the IGP size from 10K to approx the number of routers in your network
- This will bring really fast convergence
- Optimise where you must and summarise where you can
- Stops unnecessary flapping

OSPF Design: Addressing

- OSPF Design and Addressing go together
 - Objective is to keep the Link State Database lean
 - Create an address hierarchy to match the topology
 - Use separate Address Blocks for loopbacks, network infrastructure, customer interfaces & customers

Customer Address Space PtP Links Infrastructure Loopbacks

OSPF Design: Addressing

- Minimising the number of prefixes in OSPF:
 - Number loopbacks out of a contiguous address block
 - But do not summarise these across area boundaries: iBGP peer addresses need to be in the IGP
 - Use contiguous address blocks per area for infrastructure point-to-point links
 - Use area range command on ABR to summarise
- With these guidelines:
 - Number of prefixes in area 0 will then be very close to the number of routers in the network
 - It is critically important that the number of prefixes and LSAs in area 0 is kept to the absolute minimum

OSPF Design: Areas

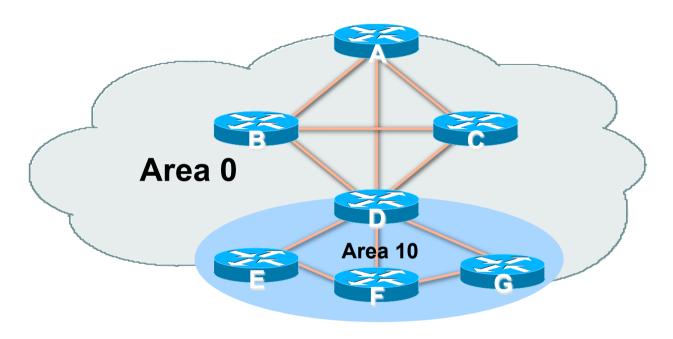
- Examine physical topology
 - Is it meshed or hub-and-spoke?
- Use areas and summarisation
 - This reduces overhead and LSA counts
 - (but watch next-hop for iBGP when summarising)
- Don't bother with the various stub areas
 - No benefits for ISPs, causes problems for iBGP
- Push the creation of a backbone
 - Reduces mesh and promotes hierarchy

OSPF Design: Areas

- One SPF per area, flooding done per area
 - Watch out for overloading ABRs
- Avoid externals in OSPF
 - DO NOT REDISTRIBUTE into OSPF
 - External LSAs flood through entire network
- Different types of areas do different flooding
 - Normal areas
 - Stub areas
 - Totally stubby (stub no-summary)
 - Not so stubby areas (NSSA)

OSPF Design: Areas

- Area 0 must be contiguous
 - Do NOT use virtual links to join two Area 0 islands
- Traffic between two non-zero areas always goes via Area 0
 - There is no benefit in joining two non-zero areas together
 - Avoid designs which have two non-zero areas touching each other
 - (Typical design is an area per PoP, with core routers being ABR to the backbone area 0)


OSPF Design: Summary

- Think Redundancy
 - Dual Links out of each area using metrics (cost) for traffic engineering
- Too much redundancy...
 - Dual links to backbone in stub areas must be the same cost – other wise sub-optimal routing will result
 - Too Much Redundancy in the backbone area without good summarisation will effect convergence in the Area 0

OSPF Areas: Migration

- Where to place OSPF Areas?
 - Follow the physical topology!
 - Remember the earlier design advice
- Configure area at a time!
 - Start at the outermost edge of the network
 - Log into routers at either end of a link and change the link from Area 0 to the chosen Area
 - Wait for OSPF to re-establish adjacencies
 - And then move onto the next link, etc
 - Important to ensure that there is never an Area 0 island anywhere in the migrating network

OSPF Areas: Migration

- Migrate small parts of the network, one area at a time
 - Remember to introduce summarisation where feasible
- With careful planning, the migration can be done with minimal network downtime

OSPF in Cisco IOS

Configuring OSPF & Adding Networks

OSPF: Configuration

- Starting OSPF in Cisco's IOS router ospf 100
 - Where "100" is the process ID
- OSPF process ID is unique to the router
 - Gives possibility of running multiple instances of OSPF on one router
 - Process ID is not passed between routers in an AS
 - Many ISPs configure the process ID to be the same as their BGP Autonomous System Number

OSPF: Establishing Adjacencies

- Cisco IOS OSPFv2 automatically tries to establish adjacencies on all defined interfaces (or subnets)
- Best practice is to disable this
 - Potential security risk: sending OSPF Hellos outside of the autonomous system, and risking forming adjacencies with external networks
 - Example: Only POS4/0 interface will attempt to form an OSPF adjacency

```
router ospf 100
passive-interface default
no passive-interface POS4/0
```

OSPF: Adding Networks Option One

Redistribution:

 Applies to all connected interfaces on the router but sends networks as external type-2s – which are not summarised

```
router ospf 100 redistribute connected subnets
```

Do NOT do this! Because:

- Type-2 LSAs flood through entire network
- These LSAs are not all useful for determining paths through backbone; they simply take up valuable space

OSPF: Adding Networks Option Two

- Per link configuration from IOS 12.4 onwards
 - OSPF is configured on each interface (same as ISIS)
 - Useful for multiple subnets per interface

```
interface POS 4/0
  ip address 192.168.1.0 255.255.255.0
  ip address 172.16.1.0 255.255.255.224 secondary
  ip ospf 100 area 0
!
router ospf 100
  passive-interface default
  no passive-interface POS 4/0
```

OSPF: Adding Networks Option Three

- Specific network statements
 - Every active interface with a configured IP address needs an OSPF network statement
 - Interfaces that will have no OSPF neighbours need passive-interface to disable OSPF Hello's
 - That is: all interfaces connecting to devices outside the ISP backbone (i.e. customers, peers, etc)

```
router ospf 100
network 192.168.1.0 0.0.0.3 area 51
network 192.168.1.4 0.0.0.3 area 51
passive-interface Serial 1/0
```

OSPF: Adding Networks Option Four

- Network statements wildcard mask
 - Every active interface with configured IP address covered by wildcard mask used in OSPF network statement
 - Interfaces covered by wildcard mask but having no OSPF neighbours need passive-interface (or use passive-interface default and then activate the interfaces which will have OSPF neighbours)

```
router ospf 100
network 192.168.1.0 0.0.0.255 area 51
passive-interface default
no passive interface POS 4/0
```

OSPF: Adding Networks Recommendations

- Don't ever use Option 1
- Use Option 2 if supported; otherwise:
- Option 3 is fine for core/infrastructure routers
 - Doesn't scale too well when router has a large number of interfaces but only a few with OSPF neighbours
 - → solution is to use Option 3 with "no passive" on interfaces with OSPF neighbours
- Option 4 is preferred for aggregation routers
 - Or use iBGP next-hop-self
 - Or even ip unnumbered on external point-to-point links

OSPF: Adding Networks Example One (Cisco IOS ≥ 12.4)

Aggregation router with large number of leased line customers and just two links to the core network:

```
interface loopback 0
 ip address 192.168.255.1 255.255.255.255
 ip ospf 100 area 0
interface POS 0/0
 ip address 192.168.10.1 255.255.255.252
 ip ospf 100 area 0
interface POS 1/0
 ip address 192.168.10.5 255.255.255.252
 ip ospf 100 area 0
interface serial 2/0:0 ...
 ip unnumbered loopback 0
! Customers connect here ^^^^^
router ospf 100
passive-interface default
no passive interface POS 0/0
no passive interface POS 1/0
```

OSPF: Adding Networks Example One (Cisco IOS < 12.4)

Aggregation router with large number of leased line customers and just two links to the core network:

```
interface loopback 0
 ip address 192.168.255.1 255.255.255.255
interface POS 0/0
 ip address 192.168.10.1 255.255.255.252
interface POS 1/0
 ip address 192.168.10.5 255.255.255.252
interface serial 2/0:0 ...
 ip unnumbered loopback 0
! Customers connect here ^^^^^
router ospf 100
 network 192.168.255.1 0.0.0.0 area 51
network 192.168.10.0 0.0.0.3 area 51
network 192.168.10.4 0.0.0.3 area 51
passive-interface default
no passive interface POS 0/0
no passive interface POS 1/0
```

OSPF: Adding Networks Example Two (Cisco IOS ≥ 12.4)

Core router with only links to other core routers:

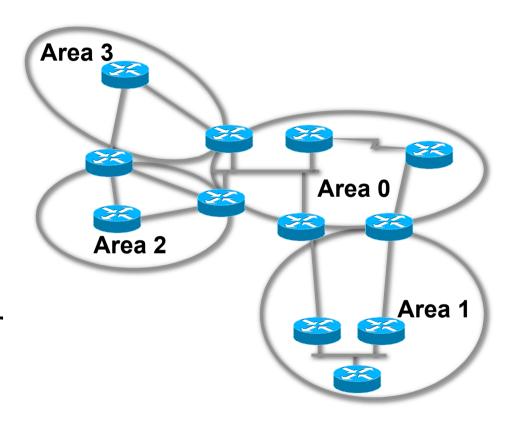
```
interface loopback 0
 ip address 192.168.255.1 255.255.255.255
 ip ospf 100 area 0
interface POS 0/0
ip address 192.168.10.129 255.255.255.252
 ip ospf 100 area 0
interface POS 1/0
 ip address 192.168.10.133 255.255.255.252
 ip ospf 100 area 0
interface POS 2/0
ip address 192.168.10.137 255.255.255.252
ip ospf 100 area 0
interface POS 2/1
 ip address 192.168.10.141 255.255.255.252
 ip ospf 100 area 0
router ospf 100
passive interface loopback 0
```

OSPF: Adding Networks Example Two (Cisco IOS < 12.4)

Core router with only links to other core routers:

```
interface loopback 0
 ip address 192.168.255.1 255.255.255.255
interface POS 0/0
 ip address 192.168.10.129 255.255.255.252
interface POS 1/0
 ip address 192.168.10.133 255.255.255.252
interface POS 2/0
ip address 192.168.10.137 255.255.255.252
interface POS 2/1
 ip address 192.168.10.141 255.255.255.252
router ospf 100
network 192.168.255.1 0.0.0.0 area 0
network 192.168.10.128 0.0.0.3 area 0
network 192.168.10.132 0.0.0.3 area 0
network 192.168.10.136 0.0.0.3 area 0
network 192.168.10.140 0.0.0.3 area 0
passive interface loopback 0
```

OSPF: Adding Networks Summary


- Key Theme when selecting a technique: Keep the Link State Database Lean
 - Increases Stability
 - Reduces the amount of information in the Link State Advertisements (LSAs)
 - Speeds Convergence Time

OSPF in Cisco IOS

Useful features for ISPs

Areas

- An area is a 32-bit field:
 - Defined in IPv4 address format (i.e. Area 0.0.0.0)
 - Can also be defined using single decimal value (i.e. Area 0)
- 0.0.0.0 reserved for the backbone area

Logging Adjacency Changes

- The router will generate a log message whenever an OSPF neighbour changes state
- Syntax:
 - [no] [ospf] log-adjacency-changes
 - (OSPF keyword is optional, depending on IOS version)
- Example of a typical log message:
 - %OSPF-5-ADJCHG: Process 1, Nbr 223.127.255.223 on Ethernet0 from LOADING to FULL, Loading Done

Router ID

- If the loopback interface exists and has an IP address, that is used as the router ID in routing protocols – stability!
- If the loopback interface does not exist, or has no IP address, the router ID is the highest IP address configured – danger!
- OSPF sub command to manually set the Router ID:
 - router-id <ip address>

Cost & Reference Bandwidth

- Bandwidth used in Metric calculation
 - Cost = 10⁸/bandwidth
 - Not useful for interface bandwidths > 100 Mbps
- Syntax:
 - ospf auto-cost reference-bandwidth <referencebw>
- Default reference bandwidth still 100 Mbps for backward compatibility
- Most ISPs simply choose to develop their own cost strategy and apply to each interface type

Cost: Example Strategy

100GE	100Gbps	cost = 1
40GE/OC768	40Gbps	cost = 2
10GE/OC192	10Gbps	cost = 5
OC48	2.5Gbps	cost = 10
GigEthernet	1Gbps	cost = 20
OC12	622Mbps	cost = 50
OC3	155Mbps	cost = 100
FastEthernet	100Mbps	cost = 200
Ethernet	10Mbps	cost = 500
E1	2Mbps	cost = 1000

Default routes

- Originating a default route into OSPF
 - default-information originate metric <n>
 - Will originate a default route into OSPF if there is a matching default route in the Routing Table (Global RIB)
 - The optional always keyword will always originate a default route, even if there is no existing entry in the RIB

Use OSPF Authentication

- Use authentication
 - Too many operators overlook this basic requirement
- When using authentication, use the MD5 feature
 - Under the global OSPF configuration, specify:
 area <area-id> authentication message-digest
 - Under the interface configuration, specify:
 ip ospf message-digest-key 1 md5 <key>
- Authentication can be selectively disabled per interface with:

ip ospf authentication null

Point to Point Ethernet Links

- For any broadcast media (like Ethernet), OSPF will attempt to elect a designated and backup designated router when it forms an adjacency
 - Point-to-point mode improves convergence times on point-to-point Ethernet links because it:
 - Prevents the election of a DR/BDR on the link,
 - Simplifies the SPF computations and reduces the router's memory footprint due to a smaller topology database.
 - Speeds link failure detection and convergence

```
interface fastethernet0/2
ip ospf network point-to-point
```

Tuning OSPF (1)

DR/BDR Selection

- ip ospf priority 100 (default 1)
- This feature should be in use in your OSPF network
- Forcibly set your DR and BDR per segment so that they are known
- Choose your most powerful, or most idle routers, so that OSPF converges as fast as possible under maximum network load conditions
- Try to keep the DR/BDR limited to one segment each

Tuning OSPF (2)

- OSPF startup
 - max-metric router-lsa on-startup wait-for-bgp
 - Avoids blackholing traffic on router restart
 - Causes OSPF to announce its prefixes with highest possible metric until iBGP is up and running
 - When iBGP is running, OSPF metrics return to normal, make the path valid
- ISIS equivalent:
 - set-overload-bit on-startup wait-for-bgp

Tuning OSPF (3)

- Hello/Dead Timers
 - ip ospf hello-interval 3 (default 10)
 - ip ospf dead-interval 15 (default is 4x hello)
 - This allows for faster network awareness of a failure, and can result in faster reconvergence, but requires more router CPU and generates more overhead
- LSA Pacing
 - timers lsa-group-pacing 300 (default 240)
 - Allows grouping and pacing of LSA updates at configured interval
 - Reduces overall network and router impact

Tuning OSPF (4)

OSPF Internal Timers

- timers spf 2 8 (default is 5 and 10)
- Allows you to adjust SPF characteristics
- The first number sets wait time from topology change to SPF run
- The second is hold-down between SPF runs
- BE CAREFUL WITH THIS COMMAND; if you're not sure when to use it, it means you don't need it; default is sufficient 95% of the time

Summary

- OSPF has a bewildering number of features and options
- Observe ISP best practices
- Keep design and configuration simple
- Investigate tuning options and suitability for your own network
 - Don't just turn them on!

Deploying OSPF: A Review for ISPs

AfNOG 2012 AR-E Workshop