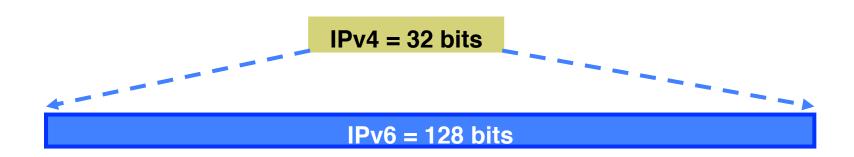
IPv6 Protocols & Standards

AfNOG 2012 AR-E Workshop

So what has really changed?

- Expanded address space
 - Address length quadrupled to 16 bytes
- Header Format Simplification
 - Fixed length, optional headers are daisy-chained
 - IPv6 header is twice as long (40 bytes) as IPv4 header without options (20 bytes)
- No checksum at the IP network layer
- No hop-by-hop segmentation
 - Path MTU discovery
- 64 bits aligned
- Authentication and Privacy Capabilities
 - IPsec is mandated
- No more broadcast


IPv4 and IPv6 Header Comparison

IPv4 Header

IPv6 Header

Version	IHL	Type of Service	To	tal Length	Version	Traffic Class	Flow L	abel
Identification		Flags	Fragment Offset	Pay	load Length	Next Header	Hop Limit	
Time to	o Live	Protocol	Head	er Checksum				
Source Address				Source Address				
Destination Address								
Options Padding								
Legend	Field's name kept from IPv4 to IPv6 Fields not kept in IPv6 Name and position changed in IPv6				Destina	tion Address		
New field in IPv6								

Larger Address Space

- IPv4
 - 32 bits
 - = 4,294,967,296 possible addressable devices
- IPv6
 - 128 bits: 4 times the size in bits
 - = 3.4×10^{38} possible addressable devices
 - = 340,282,366,920,938,463,463,374,607,431,768,211,456
 - $\sim 5 \times 10^{28}$ addresses per person on the planet

How was the IPv6 Address Size Chosen?

- Some wanted fixed-length, 64-bit addresses
 - Easily good for 10¹² sites, 10¹⁵ nodes, at .0001 allocation efficiency (3 orders of magnitude more than IPv6 requirement)
 - Minimizes growth of per-packet header overhead
 - Efficient for software processing
- Some wanted variable-length, up to 160 bits
 - Compatible with OSI NSAP addressing plans
 - Big enough for auto-configuration using IEEE 802 addresses
 - Could start with addresses shorter than 64 bits & grow later
- Settled on fixed-length, 128-bit addresses

IPv6 Address Representation

- 16 bit fields in case insensitive colon hexadecimal representation
 - 2031:0000:130F:0000:0000:09C0:876A:130B
- Leading zeros in a field are optional:
 - 2031:0:130F:0:0:9C0:876A:130B
- Successive fields of 0 represented as ::, but only once in an address:

```
■ 2031:0:130F::9C0:876A:130B is ok
```

- 2031::130F::9C0:876A:130B is NOT ok
- $0:0:0:0:0:0:0:1 \rightarrow ::1$ (loopback address)
- $0:0:0:0:0:0:0:0 \rightarrow ::$ (unspecified address)

IPv6 Address Representation

- IPv4-compatible (not used any more)
 - 0:0:0:0:0:0:192.168.30.1
 - **=** ::192.168.30.1
 - = ::C0A8:1E01
- In a URL, it is enclosed in brackets (RFC3986)
 - http://[2001:db8:4f3a::206:ae14]:8080/index.html
 - Cumbersome for users
 - Mostly for diagnostic purposes
 - Use fully qualified domain names (FQDN)
- $\square \Rightarrow$ The DNS has to work!!

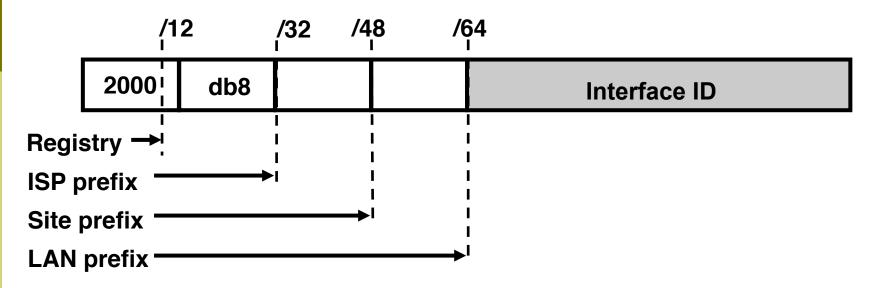
IPv6 Address Representation

- Prefix Representation
 - Representation of prefix is just like IPv4 CIDR
 - In this representation you attach the prefix length
 - Like IPv4 address:

```
198.10.0.0/16
```

IPv6 address is represented in the same way:

```
□ 2001:db8:12::/40
```


IPv6 Addressing

- IPv6 Addressing rules are covered by multiples RFCs
 - Architecture defined by RFC 4291
- Address Types are :
 - Unicast : One to One (Global, Unique Local, Link local)
 - Anycast : One to Nearest (Allocated from Unicast)
 - Multicast : One to Many
- A single interface may be assigned multiple IPv6 addresses of any type (unicast, anycast, multicast)
 - No Broadcast Address → Use Multicast

IPv6 Addressing

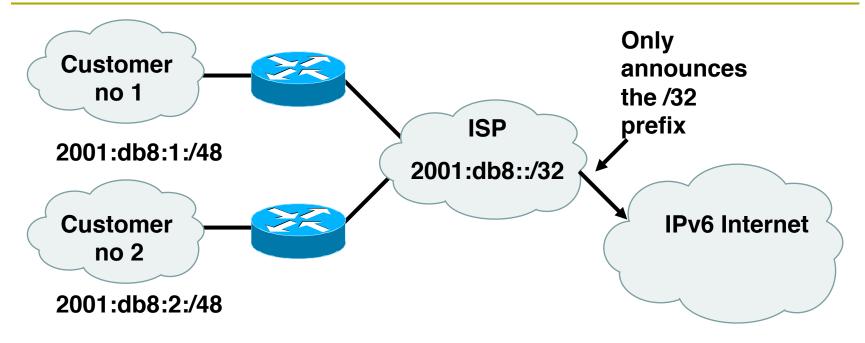
Туре	Binary	Hex
Unspecified	0000	::/128
Loopback	0001	::1/128
Global Unicast Address	0010	2000::/3
Link Local Unicast Address	1111 1110 10	FE80::/10
Unique Local Unicast Address	1111 1100 1111 1101	FC00::/7
Multicast Address	1111 1111	FF00::/8

IPv6 Address Allocation

- The allocation process is:
 - The IANA is allocating out of 2000::/3 for initial IPv6 unicast use
 - Each registry gets a /12 prefix from the IANA
 - Registry allocates a /32 prefix (or larger) to an IPv6 ISP
 - Policy is that an ISP allocates a /48 prefix to each end customer

IPv6 Addressing Scope

- 64 bits reserved for the interface ID
 - Possibility of 2⁶⁴ hosts on one network LAN
 - In theory 18,446,744,073,709,551,616 hosts
 - Arrangement to accommodate MAC addresses within the IPv6 address
- □ 16 bits reserved for the end site
 - Possibility of 2¹⁶ networks at each end-site
 - 65536 subnets equivalent to a /12 in IPv4 (assuming a /28 or 16 hosts per IPv4 subnet)

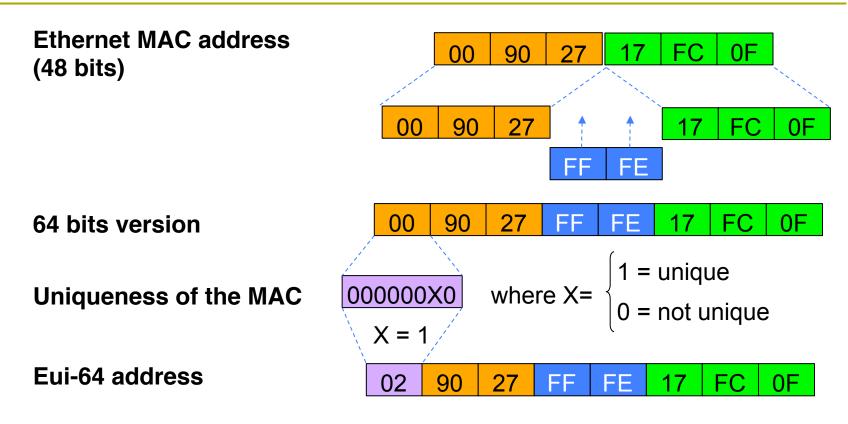

IPv6 Addressing Scope

- □ 16 bits reserved for each service provider
 - Possibility of 2¹⁶ end-sites per service provider
 - 65536 possible customers: equivalent to each service provider receiving a /8 in IPv4 (assuming a /24 address block per customer)
- 29 bits reserved for all service providers
 - Possibility of 2²⁹ service providers
 - i.e. 536,870,912 discrete service provider networks
 - Although some service providers already are justifying more than a /32

How to get an IPv6 Address?

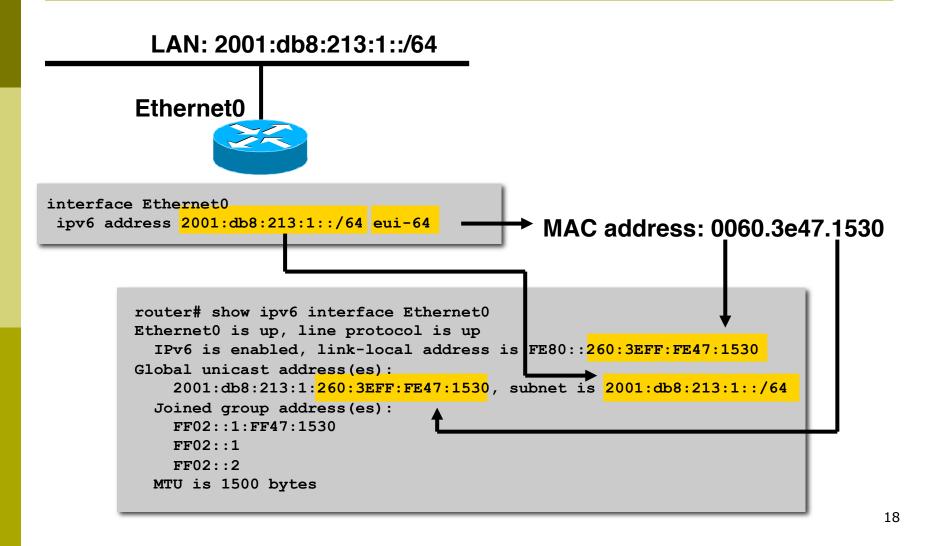
- IPv6 address space is allocated by the 5 RIRs:
 - AfriNIC, APNIC, ARIN, LACNIC, RIPE NCC
 - ISPs get address space from the RIRs
 - Enterprises get their IPv6 address space from their ISP
- □ 6to4 tunnels 2002::/16
 - Last resort only and now mostly useless
- □ (6Bone)
 - Was the IPv6 experimental network since the mid 90s
 - Now retired, end of service was 6th June 2006 (RFC3701)

Aggregation hopes

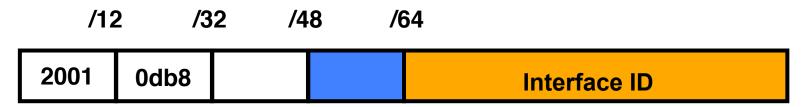


- Larger address space enables aggregation of prefixes announced in the global routing table
- Idea was to allow efficient and scalable routing
- But current Internet multihoming solution breaks this model

Interface IDs


- Lowest order 64-bit field of unicast address may be assigned in several different ways:
 - Auto-configured from a 64-bit EUI-64, or expanded from a 48-bit MAC address (e.g., Ethernet address)
 - Auto-generated pseudo-random number (to address privacy concerns)
 - Assigned via DHCP
 - Manually configured

EUI-64



EUI-64 address is formed by inserting FFFE and OR'ing a bit identifying the uniqueness of the MAC address

IPv6 Addressing Examples

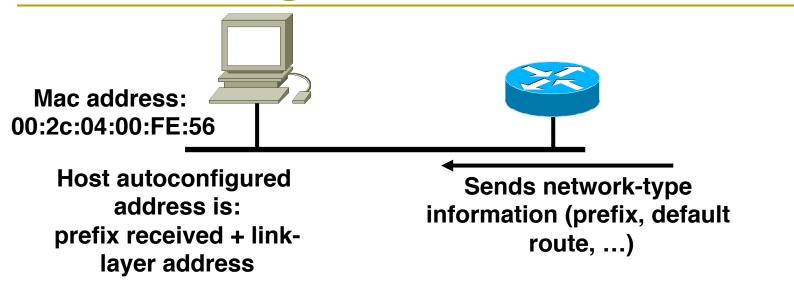
IPv6 Address Privacy (RFC 4941)

- Temporary addresses for IPv6 host client application, e.g. Web browser
- Intended to inhibit device/user tracking but is also a potential issue
 - More difficult to scan all IP addresses on a subnet
 - But port scan is identical when an address is known
- Random 64 bit interface ID, run DAD before using it
- Rate of change based on local policy
- Implemented on Microsoft Windows XP/Vista/7
 - Can be activated on FreeBSD/Linux/MacOS with a system call

Host IPv6 Addressing Options

- □ Stateless (RFC4862)
 - SLAAC Stateless Address Autoconfiguration
 - Booting node sends a "router solicitation" to request "router advertisement" to get information to configure its interface
 - Booting node configures its own Link-Local address
- Stateful
 - DHCPv6 required by most enterprises
 - Manual like IPv4 pre-DHCP
 - Useful for servers and router infrastructure
 - Doesn't scale for typical end user devices

IPv6 Renumbering


Renumbering Hosts

- Stateless:
 - Hosts renumbering is done by modifying the RA to announce the old prefix with a short lifetime and the new prefix
- Stateful:
 - DHCPv6 uses same process as DHCPv4

Renumbering Routers

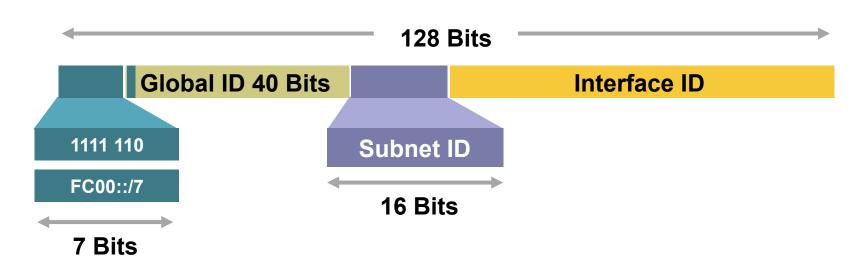
- Router renumbering protocol was developed (RFC 2894) to allow domain-interior routers to learn of prefix introduction / withdrawal
- No known implementation!

Auto-configuration

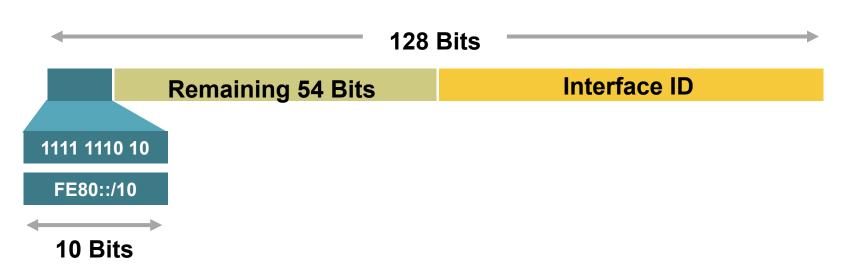
- PC sends router solicitation (RS) message
- Router responds with router advertisement (RA)
 - This includes prefix and default route
 - RFC6106 adds DNS server option
- PC configures its IPv6 address by concatenating prefix received with its EUI-64 address

Renumbering

Host auto-configured address is:


NEW prefix received + SAME link-layer address

Sends **NEW** network-type information (prefix, default route, ...)


- Router sends router advertisement (RA)
 - This includes the new prefix and default route (and remaining lifetime of the old address)
- PC configures a new IPv6 address by concatenating prefix received with its EUI-64 address
 - Attaches lifetime to old address

Unique-Local

- Unique-Local Addresses Used For:
 - Local communications & inter-site VPNs
 - Local devices such as printers, telephones, etc
 - Site Network Management systems connectivity
- Not routable on the Internet
- Reinvention of the deprecated site-local?

Link-Local

- Link-Local Addresses Used For:
 - Communication between two IPv6 device (like ARP but at Layer 3)
 - Next-Hop calculation in Routing Protocols
- Automatically assigned by Router as soon as IPv6 is enabled
 - Mandatory Address
- Only Link Specific scope
- Remaining 54 bits could be Zero or any manual configured 25 value

Multicast use

- Broadcasts in IPv4
 - Interrupts all devices on the LAN even if the intent of the request was for a subset
 - Can completely swamp the network ("broadcast storm")
- Broadcasts in IPv6
 - Are not used and replaced by multicast
- Multicast
 - Enables the efficient use of the network
 - Multicast address range is much larger

IPv6 Multicast Address

- □ IP multicast address has a prefix FF00::/8
- The second octet defines the lifetime and scope of the multicast address.

8-bit	4-bit	4-bit	112-bit
1111 1111	Lifetime	Scope	Group-ID

Lifetime	
0	If Permanent
1	If Temporary

Scope	
1	Node
2	Link
5	Site
8	Organization
Е	Global

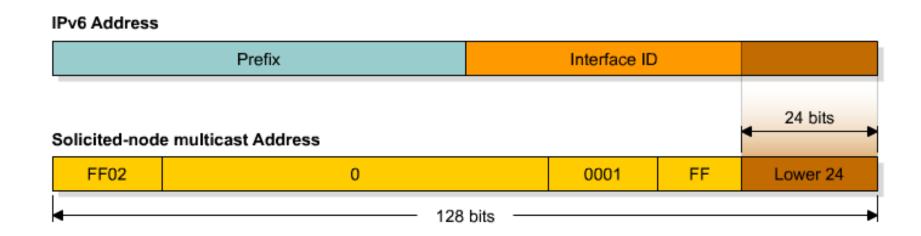
IPv6 Multicast Address Examples

RIPng

- The multicast address AllRIPRouters is FF02::9
 - Note that 02 means that this is a permanent address and has link scope

OSPFv3

- The multicast address AllSPFRouters is FF02::5
- The multicast address AllDRouters is FF02::6


EIGRP

The multicast address AllEIGRPRouters is FF02::A

Solicited-Node Multicast

- Solicited-Node Multicast is used for Duplicate Address Detection
 - Part of the Neighbour Discovery process
 - Replaces ARP
 - Duplicate IPv6 Addresses are rare, but still have to be tested for
- For each unicast and anycast address configured there is a corresponding solicited-node multicast address
 - This address is only significant for the local link

Solicited-Node Multicast Address

Solicited-node multicast address consists of FF02:0:0:0:0:1:FF::/104 prefix joined with the lower 24 bits from the unicast or anycast IPv6 address

Solicited-Node Multicast

```
R1#sh ipv6 int e0
Ethernet0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::200:CFF:FE3A:8B18
  No global unicast address is configured
  Joined group address(es):
    FF02::1
                                       Solicited-Node Multicast Address
    FF02::2
    FF02::1:FF3A:8B18
  MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
  ND DAD is enabled, number of DAD attempts: 1
  ND reachable time is 30000 milliseconds
  ND advertised reachable time is 0 milliseconds
  ND advertised retransmit interval is 0 milliseconds
  ND router advertisements are sent every 200 seconds
  ND router advertisements live for 1800 seconds
  Hosts use stateless autoconfig for addresses.
R1#
```

IPv6 Anycast

- An IPv6 anycast address is an identifier for a set of interfaces (typically belonging to different nodes)
 - A packet sent to an anycast address is delivered to one of the interfaces identified by that address (the "nearest" one, according to the routing protocol's measure of distance).
 - RFC4291 describes IPv6 Anycast in more detail
- In reality there is no known implementation of IPv6 Anycast as per the RFC
 - Most operators have chosen to use IPv4 style anycast instead

Anycast on the Internet

- A global unicast address is assigned to all nodes which need to respond to a service being offered
 - This address is routed as part of its parent address block
- The responding node is the one which is closest to the requesting node according to the routing protocol
 - Each anycast node looks identical to the other
- Applicable within an ASN, or globally across the Internet
- Typical (IPv4) examples today include:
 - Root DNS and ccTLD/gTLD nameservers
 - SMTP relays and DNS resolvers within ISP autonomous systems

MTU Issues

- Minimum link MTU for IPv6 is 1280 octets (versus 68 octets for IPv4)
 - ⇒ on links with MTU < 1280, link-specific fragmentation and reassembly must be used
- Implementations are expected to perform path MTU discovery to send packets bigger than 1280
- Minimal implementation can omit PMTU discovery as long as all packets kept ≤ 1280 octets
- A Hop-by-Hop Option supports transmission of "jumbograms" with up to 2³² octets of payload

Neighbour Discovery (RFCs 2461 & 4311)

- Protocol built on top of ICMPv6 (RFC 4443)
 - combination of IPv4 protocols (ARP, ICMP, IGMP,...)
- Fully dynamic, interactive between Hosts & Routers
 - defines 5 ICMPv6 packet types:
 - Router Solicitation / Router Advertisements
 - Neighbour Solicitation / Neighbour Advertisements
 - Redirect

IPv6 and DNS

IPv6 IPv4 **AAAA** record: A record: Hostname to IP address www.abc.test AAAA 2001:db8:c18:1::2 www.abc.test. A 192.168.30.1 PTR record: PTR record: IP address to 2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.8.1.c.0. 1.30.168.192.in-addr.arpa. PTR hostname 8.b.d.0.1.0.0.2.ip6.arpa PTR www.abc.test. www.abc.test.

IPv6 Technology Scope

IPv4 Solution	IPv6 Solution
32-bit, Network Address Translation	128-bit, Multiple Scopes
DHCP	Serverless, Reconfiguration, DHCP
IPSec	IPSec Mandated, works End-to-End
Mobile IP	Mobile IP with Direct Routing
Differentiated Service, Integrated Service	Differentiated Service, Integrated Service
IGMP/PIM/Multicast BGP	MLD/PIM/Multicast BGP, <mark>Scope Identifier</mark>
	32-bit, Network Address Translation DHCP IPSec Mobile IP Differentiated Service, Integrated Service IGMP/PIM/Multicast

What does IPv6 do for:

- Security
 - Nothing IPv4 doesn't do IPSec runs in both
 - But IPv6 mandates IPSec
- QoS
 - Nothing IPv4 doesn't do
 - Differentiated and Integrated Services run in both
 - So far, Flow label has no real use

IPv6 Security

- IPsec standards apply to both IPv4 and IPv6
- All implementations required to support authentication and encryption headers ("IPsec")
- Authentication separate from encryption for use in situations where encryption is prohibited or prohibitively expensive
- Key distribution protocols are not yet defined (independent of IP v4/v6)
- Support for manual key configuration required

IP Quality of Service Reminder

- Two basic approaches developed by IETF:
- "Integrated Service" (int-serv)
 - Fine-grain (per-flow), quantitative promises (e.g., x bits per second), uses RSVP signaling
- "Differentiated Service" (diff-serv)
 - Coarse-grain (per-class), qualitative promises (e.g., higher priority), no explicit signaling
- □ Signaled diff-serv (RFC 2998)
 - Uses RSVP for signaling with course-grained qualitative aggregate markings
 - Allows for policy control without requiring per-router state overhead

IPv6 Support for Int-Serv

- 20-bit Flow Label field to identify specific flows needing special QoS
 - Each source chooses its own Flow Label values; routers use Source Addr + Flow Label to identify distinct flows
 - Flow Label value of 0 used when no special QoS requested (the common case today)
- This part of IPv6 is standardised as RFC 3697

IPv6 Support for Diff-Serv

- 8-bit Traffic Class field to identify specific classes of packets needing special QoS
 - Same as new definition of IPv4 Type-of-Service byte
 - May be initialized by source or by router enroute; may be rewritten by routers enroute
 - Traffic Class value of 0 used when no special QoS requested (the common case today)

IPv6 Standards

- □ Core IPv6 specifications are IETF Draft Standards → well-tested & stable
 - IPv6 base spec, ICMPv6, Neighbor Discovery, PMTU Discovery,...
- Other important specs are further behind on the standards track, but in good shape
 - Mobile IPv6, header compression,...
 - For up-to-date status: www.ipv6tf.org
- 3GPP UMTS Rel. 5 cellular wireless standards mandate IPv6; also being considered by 3GPP2

IPv6 Status – Standardisation

Several key components on standards track...

Specification (RFC2460) Neighbour Discovery (RFC4861 & 4311)

RIP (RFC2080) BGP (RFC2545)

IGMPv6 (RFC2710) OSPF (RFC5340)

Router Alert (RFC2711) Jumbograms (RFC2675)

Autoconfiguration (RFC4862) Radius (RFC3162)

DHCPv6 (RFC3315 & 4361) Flow Label (RFC3697)

IPv6 Mobility (RFC3775) Mobile IPv6 MIB (RFC4295)

GRE Tunnelling (RFC2473) Unique Local IPv6 Addresses (RFC4193)

DAD for IPv6 (RFC4429) Teredo (RFC4380) ISIS for IPv6 (RFC5308) VRRP (RFC5798)

□ IPv6 available over:

Facebook (RFC5514)

PPP (RFC5072) Ethernet (RFC2464)

FDDI (RFC2467) Token Ring (RFC2470)

NBMA (RFC2491) ATM (RFC2492)

Frame Relay (RFC2590) ARCnet (RFC2497)

IEEE1394 (RFC3146) FibreChannel (RFC4338)

44

Recent IPv6 Hot Topics

- IPv4 depletion debate
 - IANA IPv4 pool ran out on 3rd February 2011
 - http://www.potaroo.net/tools/ipv4/
- IPv6 Transition "assistance"
 - CGN, 6rd, NAT64, IVI, DS-Lite, 6to4...
- Mobile IPv6
- Multihoming
 - SHIM6 "dead", Multihoming in IPv6 same as in IPv4
- IPv6 Security
 - Security industry & experts taking much closer look

Conclusion

- Protocol is "ready to go"
- The core components have already seen several years field experience

IPv6 Protocols & Standards

AfNOG 2012 AR-E Workshop