# BGP Attributes and BGP Path Selection

AfNOG 2012 AR-E Workshop

### **BGP** Attributes

#### The "tools" available for the job

### What Is an Attribute?

|  | Next<br>Hop | AS Path | MED |  |  |
|--|-------------|---------|-----|--|--|
|--|-------------|---------|-----|--|--|

Describes the characteristics of prefix
 Transitive or non-transitive
 Some are mandatory

#### AS-Path



#### AS-Path (with 16 and 32-bit ASNs)







#### Next Hop



### iBGP Next Hop



Recursive route look-up



#### Next Hop Best Practice

- Cisco IOS default is for external next-hop to be propagated unchanged to iBGP peers
  - This means that IGP has to carry external next-hops
  - Forgetting means external network is invisible
  - With many eBGP peers, it is unnecessary extra load on IGP
- ISP Best Practice is to change external next-hop to be that of the local router

neighbor x.x.x.x next-hop-self

### Next Hop (Summary)

IGP should carry route to next hops
 Recursive route look-up
 Unlinks BGP from actual physical topology
 Use "next-hop-self" for external next hops
 Allows IGP to make intelligent forwarding decision

### Origin

Conveys the origin of the prefix
Historical attribute

Used in transition from EGP to BGP

Transitive and Mandatory Attribute
Influences best path selection
Three values: IGP, EGP, incomplete

IGP – generated by BGP network statement

- EGP generated by EGP
- incomplete redistributed from another routing protocol

### Aggregator

- Conveys the IP address of the router or BGP speaker generating the aggregate route
- Optional & transitive attribute
- Useful for debugging purposes
- Does not influence best path selection
- Creating aggregate using "aggregateaddress" sets the aggregator attribute:

```
router bgp 100
aggregate-address 100.1.0.0 255.255.0.0
```

#### Local Preference



#### Local Preference

Non-transitive and optional attribute
 Local to an AS only

 Default local preference is 100 (IOS)

 Used to influence BGP path selection

 determines best path for *outbound* traffic

 Path with highest local preference wins

#### Local Preference

```
Configuration of Router B:
   router bgp 400
    neighbor 120.5.1.1 remote-as 300
    neighbor 120.5.1.1 route-map local-pref in
   I
   route-map local-pref permit 10
   match ip address prefix-list MATCH
    set local-preference 800
   route-map local-pref permit 20
   1
   ip prefix-list MATCH permit 160.10.0.0/16
```

#### Multi-Exit Discriminator (MED)



#### Multi-Exit Discriminator

- Inter-AS non-transitive & optional attribute
- Used to convey the relative preference of entry points
  - determines best path for inbound traffic
- Comparable if paths are from same AS
  - bgp always-compare-med allows comparisons of MEDs from different ASes
- Path with lowest MED wins
- Absence of MED attribute implies MED value of zero (RFC4271)

#### MED & IGP Metric

#### IGP metric can be conveyed as MED

- set metric-type internal in route-map
  - enables BGP to advertise a MED which corresponds to the IGP metric values
  - changes are monitored (and re-advertised if needed) every 600s
  - bgp dynamic-med-interval <secs>

#### Multi-Exit Discriminator

```
Configuration of Router B:
   router bgp 400
   neighbor 120.5.1.1 remote-as 200
   neighbor 120.5.1.1 route-map set-med out
   route-map set-med permit 10
   match ip address prefix-list MATCH
    set metric 1000
   route-map set-med permit 20
   ip prefix-list MATCH permit 120.68.1.0/24
```

### Weight

Not really an attribute – local to router

- Highest weight wins
- Applied to all routes from a neighbour

neighbor 120.5.7.1 weight 100

Weight assigned to routes based on filter

```
neighbor 120.5.7.3 filter-list 3 weight 50
```



- Best path to AS4 from AS1 is always via B due to local-pref
- But packets arriving at A from AS4 over the direct C to A link will pass the RPF check as that path has a priority due to the weight being set
  - If weight was not set, best path back to AS4 would be via B, and the RPF check would fail

#### Community

Communities are described in RFC1997

- Transitive and Optional Attribute
- 32 bit integer
  - Represented as two 16 bit integers (RFC1998)
  - Common format is <local-ASN>:xx
  - 0:0 to 0:65535 and 65535:0 to 65535:65535 are reserved

#### Used to group destinations

- Each destination could be member of multiple communities
- Very useful in applying policies within and between ASes

# Community Example (before)



### Community Example

(after)



#### Well-Known Communities

#### Several well known communities

- www.iana.org/assignments/bgp-well-knowncommunities
- □ no-export
  - do not advertise to any eBGP peers
- no-advertise
  - do not advertise to any BGP peer
- no-export-subconfed
  65535:65283
  - do not advertise outside local AS (only used with confederations)

□ no-peer

#### 65535:65284

do not advertise to bi-lateral peers (RFC3765)

#### 65535:65281

#### 65535:65282

### No-Export Community



- AS100 announces aggregate and subprefixes
  - Intention is to improve loadsharing by leaking subprefixes
- Subprefixes marked with no-export community
- Router G in AS200 does not announce prefixes with noexport community set

### No-Peer Community



- Sub-prefixes marked with no-peer community are not sent to bi-lateral peers
  - They are only sent to upstream providers

#### What about 4-byte ASNs?

- Communities are widely used for encoding ISP routing policy
  - 32 bit attribute
- RFC1998 format is now "standard" practice

#### ASN:number

- Fine for 2-byte ASNs, but 4-byte ASNs cannot be encoded
- Solutions:
  - Use "private ASN" for the first 16 bits
  - Wait for http://datatracker.ietf.org/doc/draft-ietf-idras4octet-extcomm-generic-subtype/ to be implemented

### Summary Attributes in Action

. . .

```
Router6>sh ip bqp
BGP table version is 30, local router ID is 10.0.15.246
Status codes: s suppressed, d damped, h history, * valid, >
  best,
            i - internal, r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
  Network
                 Next Hop
                                   Metric LocPrf Weight
  Path
*>i10.0.0/26 10.0.15.241
                                             100 0 i
                                        0
*>i10.0.64/26 10.0.15.242
                                             100 0 i
                                        0
*>i10.0.0.128/26 10.0.15.243
                                             100 0 i
                                        0
*>i10.0.192/26 10.0.15.244
                                             100 0 i
                                        0
*>i10.0.1.0/26 10.0.15.245
                                             100 0 i
                                        0
*> 10.0.1.64/26 0.0.0.0
                                                 32768 i
                                        0
```

# BGP Path Selection Algorithm

Why is this the best path?

BGP Path Selection Algorithm for Cisco IOS: Part One

- Do not consider path if no route to next hop
- Do not consider iBGP path if not synchronised (Cisco IOS)
- Highest weight (local to router)
- Highest local preference (global within AS)
- Prefer locally originated route
- Shortest AS path

BGP Path Selection Algorithm for Cisco IOS: Part Two

Lowest origin code

- IGP < EGP < incomplete</p>
- Lowest Multi-Exit Discriminator (MED)
  - If bgp deterministic-med, order the paths before comparing
  - If bgp always-compare-med, then compare for all paths
  - otherwise MED only considered if paths are from the same AS (default)

BGP Path Selection Algorithm for Cisco IOS: Part Three

Prefer eBGP path over iBGP path

Path with lowest IGP metric to next-hop
 For eBGP paths:

- If multipath is enabled, install N parallel paths in forwarding table
- If router-id is the same, go to next step
- If router-id is not the same, select the oldest path

BGP Path Selection Algorithm for Cisco IOS: Part Four

- Lowest router-id (originator-id for reflected routes)
- Shortest cluster-list
  - Client must be aware of Route Reflector attributes!
- Lowest neighbour address

# BGP Attributes and BGP Path Selection

#### AfNOG 2012 AR-E Workshop