Simple Multihoming

AfNOG 2012 AR-E Workshop

Redundancy

- One connection to internet means the network is dependent on:
 - Local router (configuration, software, hardware)
 - WAN media (physical failure, carrier failure)
 - Upstream Service Provider (configuration, software, hardware)

Reliability

- Business critical applications demand continuous availability
- Lack of redundancy implies lack of reliability implies loss of revenue

Supplier Diversity

- Many businesses demand supplier diversity as a matter of course
- Internet connection from two or more suppliers
 - With two or more diverse WAN paths
 - With two or more exit points
 - With two or more international connections

Two of everything

Not really a reason, but oft quoted...

Leverage:

- Playing one ISP off against the other for:
 - Service Quality
 - Service Offerings
 - Availability

Summary:

- Multihoming is easy to demand as requirement of any operation
- But what does it really mean:
 - In real life?
 - For the network?
 - For the Internet?
- And how do we do it?

Multihoming Definition

- More than one link external to the local network
 - two or more links to the same ISP
 - two or more links to different ISPs
- Usually two external facing routers
 - one router gives link and provider redundancy only

Multihoming

- The scenarios described here apply equally well to end sites being customers of ISPs and ISPs being customers of other ISPs
- Implementation detail may be different
 - end site \rightarrow ISP ISP controls config
 - ISP1 \rightarrow ISP2 ISPs share config

Autonomous System Number (ASN)

Two ranges

- 0-65535 (original 16-bit range)
 65536-4294967295 (32-bit range RFC489)
- □ Usage:
 - 0 and 65535
 - **1-64495**
 - **6**4496-64511
 - **64512-65534**
 - 23456

(32-bit range - RFC4893)

(reserved)

(public Internet)

(documentation - RFC5398)

(private use only)

(represent 32-bit range in 16-bit world)

```
65536-65551 (documentation - RFC5398)
```

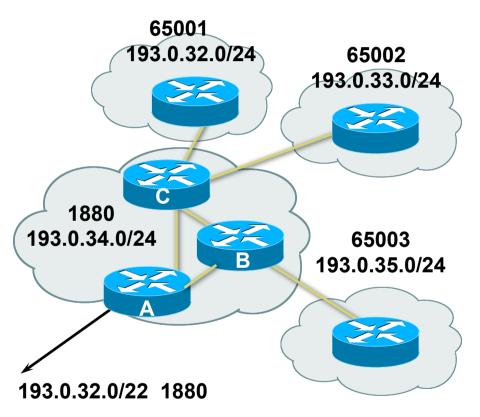
65552-4294967295 (public Internet)

□ 32-bit range representation specified in RFC5396

Defines "asplain" (traditional format) as standard notation

Autonomous System Number (ASN)

- ASNs are distributed by the Regional Internet Registries
 - They are also available from upstream ISPs who are members of one of the RIRs
- Current 16-bit ASN allocations up to 59391 have been made to the RIRs
 - Around 41000 are visible on the Internet
- The RIRs also have received blocks of 32-bit ASNs
 - Out of 2400 allocations, around 2200 are visible on the Internet
- See www.iana.org/assignments/as-numbers


Private-AS – Application

Applications

- An ISP with customers multihomed on their backbone (RFC2270) -or-
- A corporate network with several regions but connections to the Internet only in the core

-or-

 Within a BGP Confederation

Private-AS – Removal

- Private ASNs MUST be removed from all prefixes announced to the public Internet
 - Include configuration to remove private ASNs in the eBGP template
- As with RFC1918 address space, private ASNs are intended for internal use
 - They should not be leaked to the public Internet

Cisco IOS

neighbor x.x.x.x remove-private-AS

Configuring Policy

Assumptions:

- prefix-lists are used throughout
- easier/better/faster than access-lists

Three BASIC Principles

- prefix-lists to filter prefixes
- filter-lists to filter ASNs
- route-maps to apply policy
- Route-maps can be used for filtering, but this is more "advanced" configuration

Policy Tools

Local preference

outbound traffic flows

Metric (MED)

inbound traffic flows (local scope)

AS-PATH prepend

inbound traffic flows (Internet scope)

Communities

specific inter-provider peering

Originating Prefixes: Assumptions

- MUST announce assigned address block to Internet
- MAY also announce subprefixes reachability is not guaranteed
- Current minimum allocation is from /20 to /24 depending on the RIR
 - Several ISPs filter RIR blocks on this boundary
 - Several ISPs filter the rest of address space according to the IANA assignments
 - This activity is called "Net Police" by some

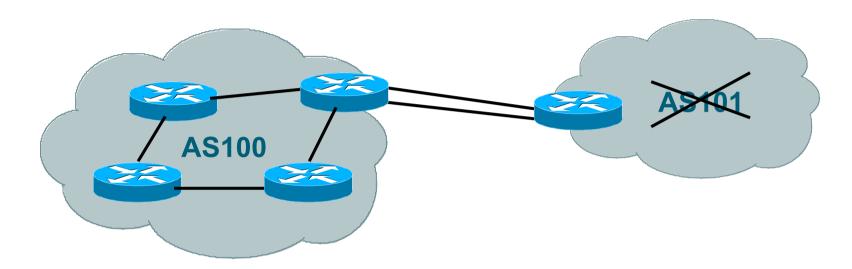
Originating Prefixes

- The RIRs publish their minimum allocation sizes per /8 address block
 - AfriNIC: www.afrinic.net/docs/policies/afpol-v4200407-000.htm
 - APNIC: www.apnic.net/db/min-alloc.html
 - ARIN: www.arin.net/reference/ip_blocks.html
 - LACNIC: lacnic.net/en/registro/index.html
 - RIPE NCC: www.ripe.net/ripe/docs/smallest-alloc-sizes.html
 - Note that AfriNIC only publishes its current minimum allocation size, not the allocation size for its address blocks
- IANA publishes the address space it has assigned to end-sites and allocated to the RIRs:

www.iana.org/assignments/ipv4-address-space

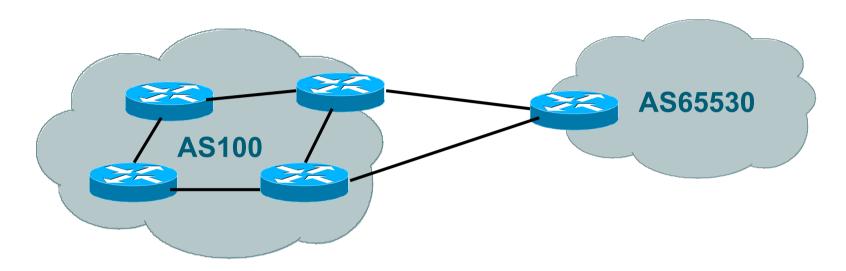
- Several ISPs use this published information to filter prefixes on:
 - What should be routed (from IANA)
 - The minimum allocation size from the RIRs

"Net Police" prefix list issues

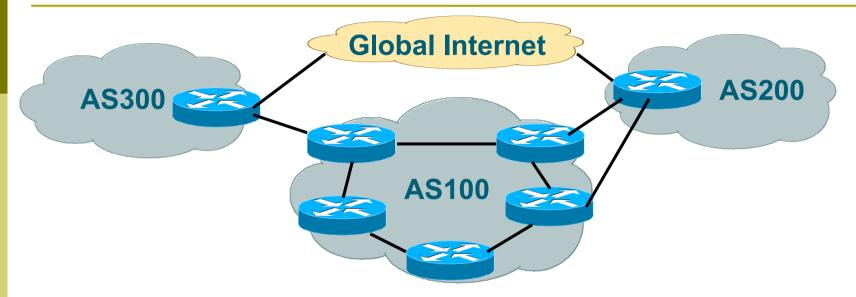

- Meant to "punish" ISPs who pollute the routing table with specifics rather than announcing aggregates
- Impacts legitimate multihoming especially at the Internet's edge
- Impacts regions where domestic backbone is unavailable or costs \$\$\$ compared with international bandwidth
- Hard to maintain requires updating when RIRs start allocating from new address blocks
- Don't do it unless consequences understood and you are prepared to keep the list current
 - Consider using the Team Cymru or other reputable bogon BGP feed:
 - www.team-cymru.org/Services/Bogons/routeserver.html

Multihoming Options

Multihoming Scenarios

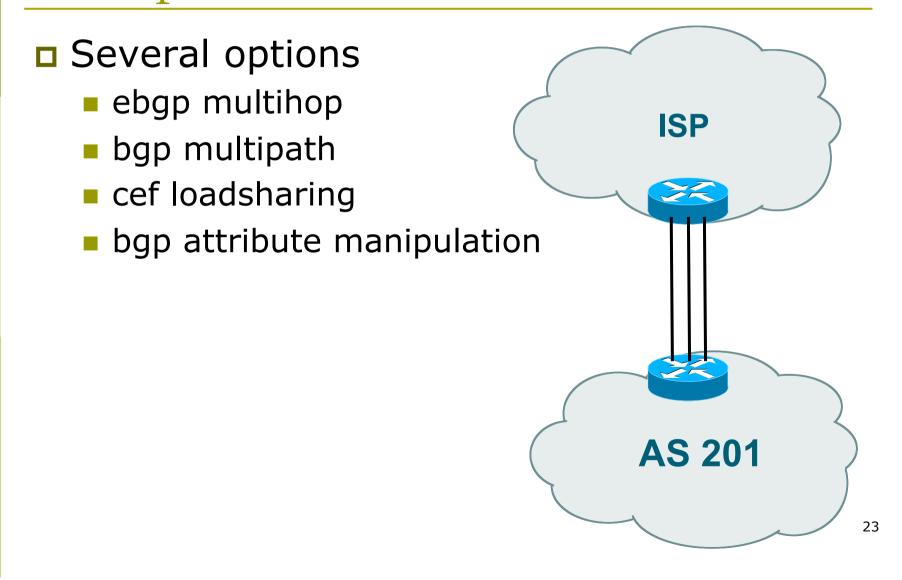

Stub network
Multi-homed stub network
Multi-homed network
Configuration Options

Stub Network


- No need for BGP
- Point static default to upstream ISP
- Upstream ISP advertises stub network
- Policy confined within upstream ISP's policy

Multi-homed Stub Network

- Use BGP (not IGP or static) to loadshare
- Use private AS (ASN > 64511)
- Upstream ISP advertises stub network
- Policy confined within upstream ISP's policy

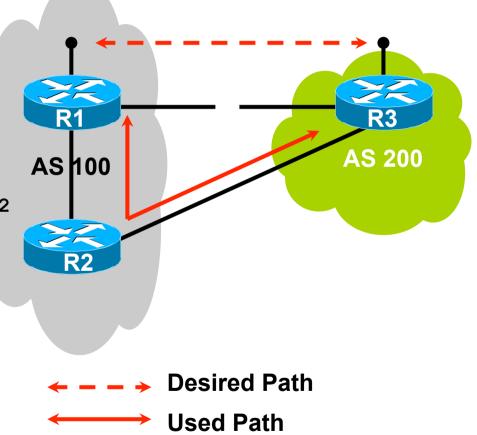

Multi-homed Network

Many situations possible

- multiple sessions to same ISP
- secondary for backup only
- Ioad-share between primary and secondary
- selectively use different ISPs

Multiple Sessions to an ISP

Multiple Sessions to an ISP – Example One

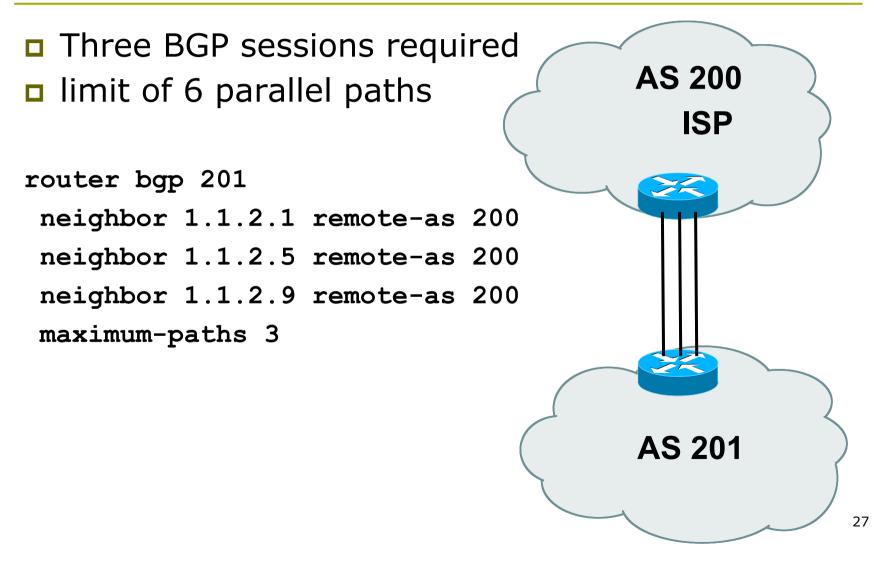

```
Use eBGP multihop
   eBGP to loopback addresses
                                                 AS 200
   eBGP prefixes learned with loopback
      address as next hop
                                                          1.1.1.1
Cisco IOS
   router bqp 65534
    neighbor 1.1.1.1 remote-as 200
    neighbor 1.1.1.1 ebgp-multihop 2
   ip route 1.1.1.1 255.255.255.255 serial 1/0
   ip route 1.1.1.1 255.255.255.255 serial 1/1
   ip route 1.1.1.1 255.255.255.255 serial 1/2
                                                  AS 65534
```

Multiple Sessions to an ISP – Example One

- One eBGP-multihop gotcha:
 - R1 and R3 are eBGP peers that are loopback peering
 - Configured with:

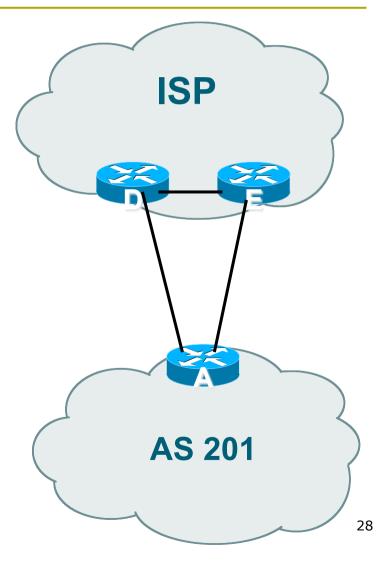
neighbor x.x.x.x ebgp-multihop 2

 If the R1 to R3 link goes down the session could establish via R2

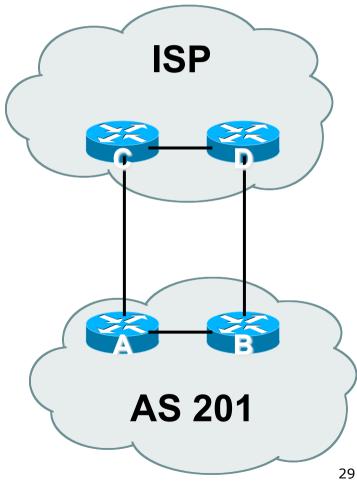

Multiple Sessions to an ISP – Example One

- Try and avoid use of ebgp-multihop unless:
 - It's absolutely necessary -or-
 - Loadsharing across multiple links
- Many ISPs discourage its use, for example:

We will run eBGP multihop, but do not support it as a standard offering because customers generally have a hard time managing it due to:


- routing loops
- failure to realise that BGP session stability problems are usually due connectivity problems between their CPE and their BGP speaker

Multiple Sessions to an ISP bgp multi path


Multiple Sessions to an ISP

- Use eBGP multi-path to install multiple paths in IP table
 - router bgp 201
 - maximum-path <1-6>
- Load share over the alternate paths
 - per destination loadsharing

Multiple Sessions to an ISP

- Simplest scheme is to use defaults
- Learn/advertise prefixes for better control
- Planning and some work required to achieve loadsharing
 - Point default towards one ISP
 - Learn selected prefixes from second ISP
 - Modify the number of prefixes learnt to achieve acceptable load sharing
- No magic solution

Basic Principles of Multihoming

Let's learn to walk before we try running...

The Basic Principles

Announcing address space attracts traffic

- (Unless policy in upstream providers interferes)
- Announcing the ISP aggregate out a link will result in traffic for that aggregate coming in that link
- Announcing a subprefix of an aggregate out a link means that all traffic for that subprefix will come in that link, even if the aggregate is announced somewhere else
 - The most specific announcement wins!

The Basic Principles

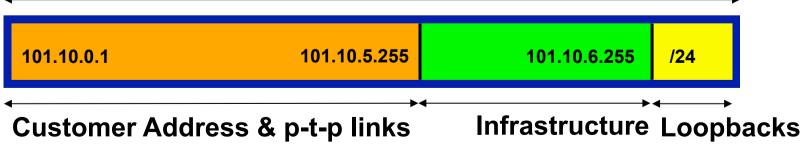
• To split traffic between two links:

- Announce the aggregate on both links ensures redundancy
- Announce one half of the address space on each link
- (This is the first step, all things being equal)
- Results in:
 - Traffic for first half of address space comes in first link
 - Traffic for second half of address space comes in second link
 - If either link fails, the fact that the aggregate is announced ensures there is a backup path

The Basic Principles

The keys to successful multihoming configuration:

- Keeping traffic engineering prefix announcements independent of customer iBGP
- Understanding how to announce aggregates
- Understanding the purpose of announcing subprefixes of aggregates
- Understanding how to manipulate BGP attributes
- Too many upstreams/external paths makes multihoming harder (2 or 3 is enough!)


IP Addressing & Multihoming

How Good IP Address Plans assist with Multihoming

IP Addressing & Multihoming

- IP Address planning is an important part of Multihoming
- Previously have discussed separating:
 - Customer address space
 - Customer p-t-p link address space
 - Infrastructure p-t-p link address space
 - Loopback address space

101.10.0.0/21

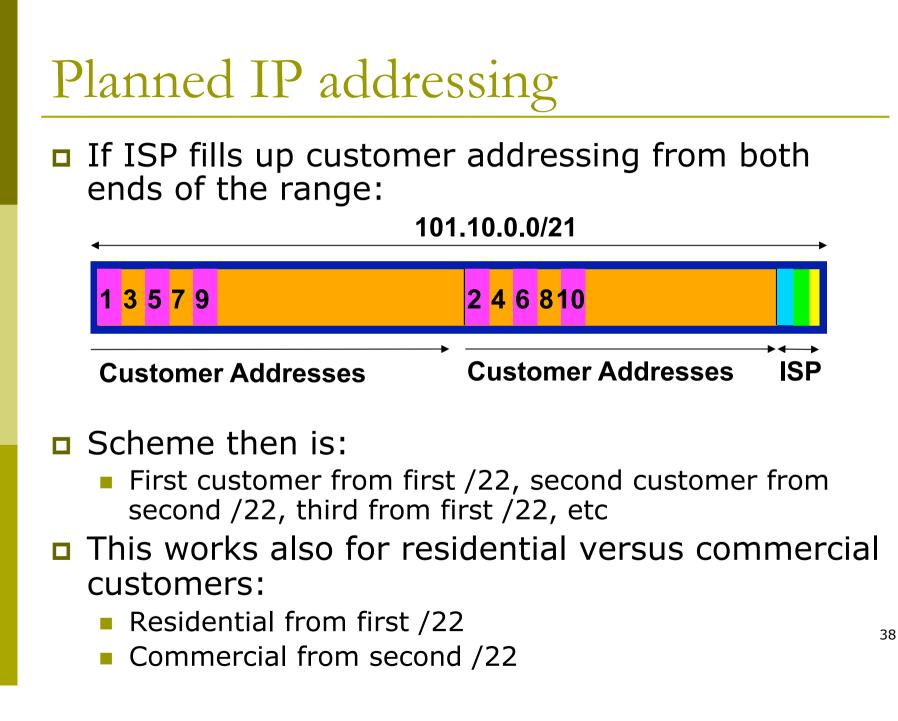
IP Addressing & Multihoming

- ISP Router loopbacks and backbone point to point links make up a small part of total address space
 - And they don't attract traffic, unlike customer address space
- Links from ISP Aggregation edge to customer router needs one /30
 - Small requirements compared with total address space
 - Some ISPs use IP unnumbered
- Planning customer assignments is a very important part of multihoming
 - Traffic engineering involves subdividing aggregate into pieces until load balancing works

Unplanned IP addressing

ISP fills up customer IP addressing from one end of the range:

101.10.0.0/21


1 <mark>2</mark> 3 <mark>4</mark> 5

Customer Addresses

Customers generate traffic

- Dividing the range into two pieces will result in one /22 with all the customers, and one /22 with just the ISP infrastructure the addresses
- No loadbalancing as all traffic will come in the first /22
- Means further subdivision of the first /22 = harder work

ISP

Planned IP Addressing

- This works fine for multihoming between two upstream links (same or different providers)
- Can also subdivide address space to suit more than two upstreams
 - Follow a similar scheme for populating each portion of the address space
- Don't forget to always announce an aggregate out of each link

Basic Multihoming

Let's try some simple worked examples...

Basic Multihoming

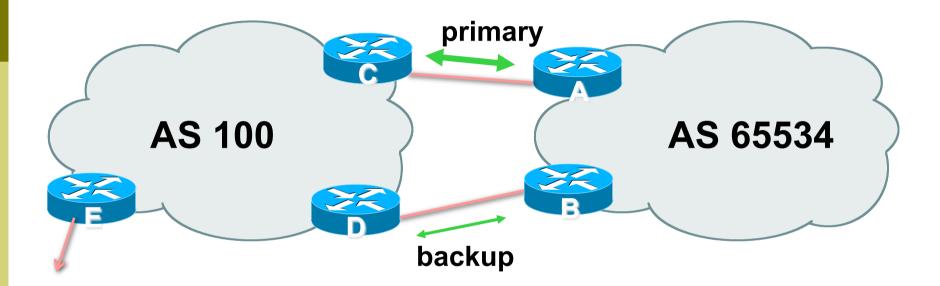
No frills multihoming

Will look at two cases:

- Multihoming with the same ISP
- Multihoming to different ISPs
- Will keep the examples easy
 - Understanding easy concepts will make the more complex scenarios easier to comprehend
 - Assume that the network which is multihoming has a /19 address block

Basic Multihoming

This type is most commonplace at the edge of the Internet


- Networks here are usually concerned with inbound traffic flows
- Outbound traffic flows being "nearest exit" is usually sufficient
- Can apply to the leaf ISP as well as Enterprise networks

Two links to the same ISP

One link primary, the other link backup only

Applies when end-site has bought a large primary WAN link to their upstream a small secondary WAN link as the backup

For example, primary path might be an E1, backup might be 64kbps

AS100 removes private AS and any customer subprefixes from Internet announcement

Announce /19 aggregate on each link

- primary link:
 - Outbound announce /19 unaltered
 - Inbound receive default route
- backup link:
 - Outbound announce /19 with increased metric
 - Inbound received default, and reduce local preference
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

```
Router A Configuration
   router bgp 65534
    network 121.10.0.0 mask 255.255.224.0
    neighbor 122.102.10.2 remote-as 100
    neighbor 122.102.10.2 description RouterC
    neighbor 122.102.10.2 prefix-list aggregate out
    neighbor 122.102.10.2 prefix-list default in
   ip prefix-list aggregate permit 121.10.0.0/19
   ip prefix-list default permit 0.0.0.0/0
   I
   ip route 121.10.0.0 255.255.224.0 null0
```

Router B Configuration router bgp 65534 network 121.10.0.0 mask 255.255.224.0 neighbor 122.102.10.6 remote-as 100 neighbor 122.102.10.6 description RouterD neighbor 122.102.10.6 prefix-list aggregate out neighbor 122.102.10.6 route-map routerD-out out neighbor 122.102.10.6 prefix-list default in neighbor 122.102.10.6 route-map routerD-in in 1

..next slide

I

```
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.224.0 null0
!
route-map routerD-out permit 10
set metric 10
!
route-map routerD-in permit 10
set local-preference 90
```

Router C Configuration (main link) router bgp 100 neighbor 122.102.10.1 remote-as 65534

neighbor 122.102.10.1 default-originate

neighbor 122.102.10.1 prefix-list Customer in

neighbor 122.102.10.1 prefix-list default out

ip prefix-list Customer permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0

Router D Configuration (backup link) router bgp 100 neighbor 122.102.10.5 remote-as 65534 neighbor 122.102.10.5 default-originate neighbor 122.102.10.5 prefix-list Customer in neighbor 122.102.10.5 prefix-list default out ! ip prefix-list Customer permit 121.10.0.0/19 ip prefix-list default permit 0.0.0.0/0

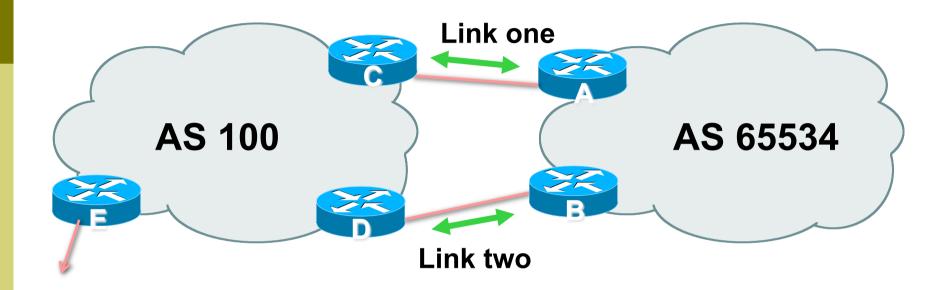
Router E Configuration

router bgp 100 neighbor 122.102.10.17 remote-as 110 neighbor 122.102.10.17 remove-private-AS neighbor 122.102.10.17 prefix-list Customer out !

ip prefix-list Customer permit 121.10.0.0/19

- Router E removes the private AS and customer's subprefixes from external announcements
- Private AS still visible inside AS100

Two links to the same ISP


With Redundancy and Loadsharing

Loadsharing to the same ISP

More common case

- End sites tend not to buy circuits and leave them idle, only used for backup as in previous example
- This example assumes equal capacity circuits
 - Unequal capacity circuits requires more refinement – see later

Loadsharing to the same ISP

Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link
 - basic inbound loadsharing
 - assumes equal circuit capacity and even spread of traffic across address block
- Vary the split until "perfect" loadsharing achieved
- Accept the default from upstream
 - basic outbound loadsharing by nearest exit
 - okay in first approx as most ISP and end-site traffic is inbound

```
Router A Configuration
   router bgp 65534
    network 121.10.0.0 mask 255.255.224.0
    network 121.10.0.0 mask 255.255.240.0
   neighbor 122.102.10.2 remote-as 100
    neighbor 122.102.10.2 prefix-list routerC out
   neighbor 122.102.10.2 prefix-list default in
   ip prefix-list default permit 0.0.0.0/0
   ip prefix-list routerC permit 121.10.0.0/20
   ip prefix-list routerC permit 121.10.0.0/19
   I
   ip route 121.10.0.0 255.255.240.0 null0
   ip route 121.10.0.0 255.255.224.0 null0
```

```
Router B Configuration
   router bgp 65534
    network 121.10.0.0 mask 255.255.224.0
    network 121.10.16.0 mask 255.255.240.0
   neighbor 122.102.10.6 remote-as 100
    neighbor 122.102.10.6 prefix-list routerD out
   neighbor 122.102.10.6 prefix-list default in
   ip prefix-list default permit 0.0.0.0/0
   ip prefix-list routerD permit 121.10.16.0/20
   ip prefix-list routerD permit 121.10.0.0/19
   I
   ip route 121.10.16.0 255.255.240.0 null0
   ip route 121.10.0.0 255.255.224.0 null0
```

```
Router C Configuration
router bgp 100
neighbor 122.102.10.1 remote-as 65534
neighbor 122.102.10.1 default-originate
neighbor 122.102.10.1 prefix-list Customer in
neighbor 122.102.10.1 prefix-list default out
!
```

ip prefix-list Customer permit 121.10.0.0/19 le 20
ip prefix-list default permit 0.0.0.0/0

- Router C only allows in /19 and /20 prefixes from customer block
- Router D configuration is identical

Router E Configuration router bgp 100 neighbor 122.102.10.17 remote-as 110 neighbor 122.102.10.17 remove-private-AS neighbor 122.102.10.17 prefix-list Customer out !

ip prefix-list Customer permit 121.10.0.0/19

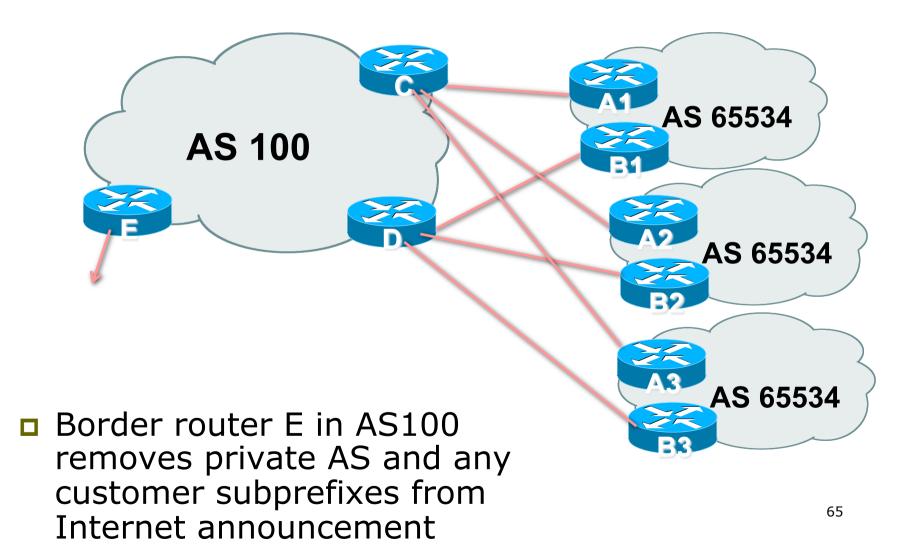
Private AS still visible inside AS100

Default route for outbound traffic?

- Use default-information originate for the IGP and rely on IGP metrics for nearest exit
- e.g. on router A:

```
router ospf 65534
default-information originate metric 2 metric-type 1
```

Loadsharing configuration is only on customer router


Upstream ISP has to

- remove customer subprefixes from external announcements
- remove private AS from external announcements
- Could also use BGP communities

Two links to the same ISP

Unusual for an ISP just to have one dualhomed customer

- Valid/valuable service offering for an ISP with multiple PoPs
- Better for ISP than having customer multihome with another provider!
- Look at scaling the configuration
 - $\blacksquare \Rightarrow$ Simplifying the configuration
 - Using templates, peer-groups, etc
 - Every customer has the same configuration (basically)

- Customer announcements as per previous example
- Use the same private AS for each customer
 - documented in RFC2270
 - address space is not overlapping
 - each customer hears default only
- Router An and Bn configuration same as Router A and B previously

```
Router A1 Configuration
   router bgp 65534
    network 121.10.0.0 mask 255.255.224.0
    network 121.10.0.0 mask 255.255.240.0
    neighbor 122.102.10.2 remote-as 100
    neighbor 122.102.10.2 prefix-list routerC out
   neighbor 122.102.10.2 prefix-list default in
   ip prefix-list default permit 0.0.0.0/0
   ip prefix-list routerC permit 121.10.0.0/20
   ip prefix-list routerC permit 121.10.0.0/19
   ip route 121.10.0.0 255.255.240.0 null0
   ip route 121.10.0.0 255.255.224.0 null0
```

```
Router B1 Configuration
   router bgp 65534
    network 121.10.0.0 mask 255.255.224.0
    network 121.10.16.0 mask 255.255.240.0
    neighbor 122.102.10.6 remote-as 100
    neighbor 122.102.10.6 prefix-list routerD out
   neighbor 122.102.10.6 prefix-list default in
   ip prefix-list default permit 0.0.0.0/0
   ip prefix-list routerD permit 121.10.16.0/20
   ip prefix-list routerD permit 121.10.0.0/19
   I
   ip route 121.10.0.0 255.255.224.0 null0
   ip route 121.10.16.0 255.255.240.0 null0
```

Router C Configuration router bgp 100 neighbor bgp-customers peer-group neighbor bgp-customers remote-as 65534 neighbor bgp-customers default-originate neighbor bgp-customers prefix-list default out neighbor 122.102.10.1 peer-group bgp-customers neighbor 122.102.10.1 description Customer One neighbor 122.102.10.1 prefix-list Customer1 in neighbor 122.102.10.9 peer-group bgp-customers neighbor 122.102.10.9 description Customer Two neighbor 122.102.10.9 prefix-list Customer2 in

neighbor 122.102.10.17 peer-group bgp-customers neighbor 122.102.10.17 description Customer Three neighbor 122.102.10.17 prefix-list Customer3 in ! ip prefix-list Customer1 permit 121.10.0.0/19 le 20 ip prefix-list Customer2 permit 121.16.64.0/19 le 20 ip prefix-list Customer3 permit 121.14.192.0/19 le 20 ip prefix-list Customer3 permit 121.14.192.0/19 le 20

Router C only allows in /19 and /20 prefixes from customer block

Router D Configuration router bgp 100 neighbor bgp-customers peer-group neighbor bgp-customers remote-as 65534 neighbor bgp-customers default-originate neighbor bgp-customers prefix-list default out neighbor 122.102.10.5 peer-group bgp-customers neighbor 122.102.10.5 description Customer One neighbor 122.102.10.5 prefix-list Customer1 in neighbor 122.102.10.13 peer-group bgp-customers neighbor 122.102.10.13 description Customer Two neighbor 122.102.10.13 prefix-list Customer2 in

neighbor 122.102.10.21 peer-group bgp-customers neighbor 122.102.10.21 description Customer Three neighbor 122.102.10.21 prefix-list Customer3 in ! ip prefix-list Customer1 permit 121.10.0.0/19 le 20 ip prefix-list Customer2 permit 121.16.64.0/19 le 20 ip prefix-list Customer3 permit 121.14.192.0/19 le 20 ip prefix-list Customer3 permit 121.14.192.0/19 le 20

Router D only allows in /19 and /20 prefixes from customer block

Multiple Dualhomed Customers (RFC2270)

Router E Configuration

 assumes customer address space is not part of upstream's address block

```
router bgp 100
neighbor 122.102.10.17 remote-as 110
neighbor 122.102.10.17 remove-private-AS
neighbor 122.102.10.17 prefix-list Customers out
!
ip prefix-list Customers permit 121.10.0.0/19
```

```
ip prefix-list Customers permit 121.10.0.0/19
ip prefix-list Customers permit 121.16.64.0/19
ip prefix-list Customers permit 121.14.192.0/19
```

Private AS still visible inside AS100

Multiple Dualhomed Customers (RFC2270)

- If customers' prefixes come from ISP's address block
 - do NOT announce them to the Internet
 - announce ISP aggregate only
- Router E configuration:

```
router bgp 100
neighbor 122.102.10.17 remote-as 110
neighbor 122.102.10.17 prefix-list my-aggregate out
!
ip prefix-list my-aggregate permit 121.8.0.0/13
```

Multihoming Summary

- Use private AS for multihoming to upstream
- Leak subprefixes to upstream only to aid loadsharing
- Upstream router E configuration is identical across all situations

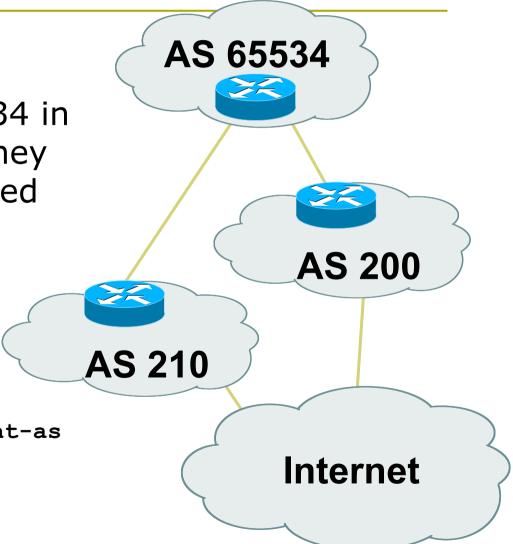
Basic Multihoming

Multihoming to Different ISPs

Two links to different ISPs

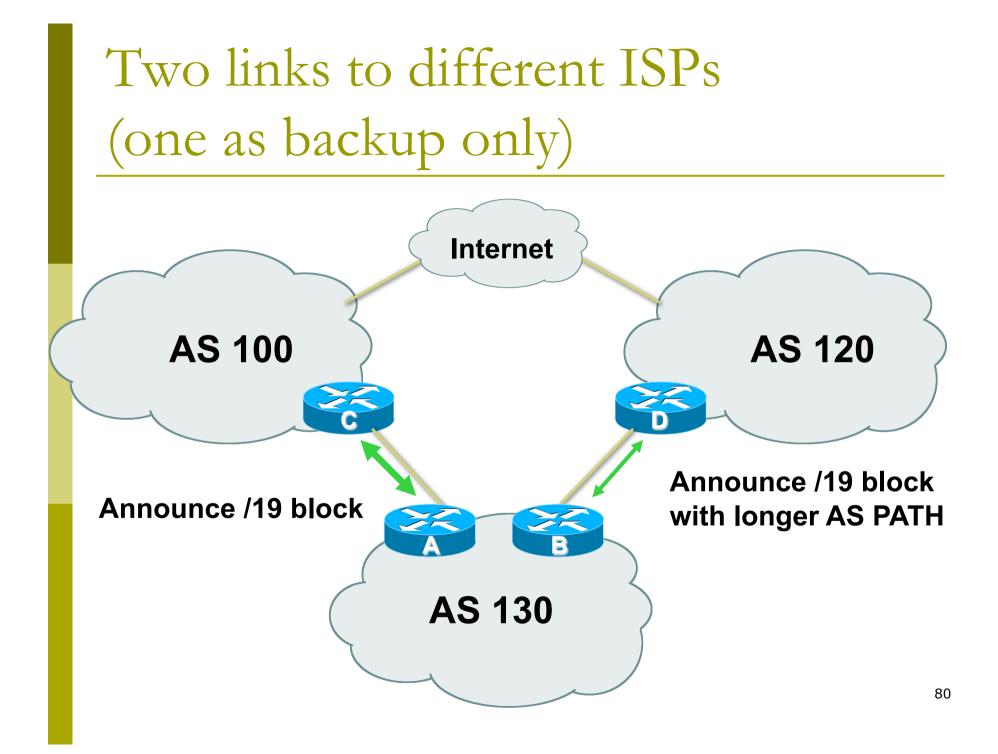
Use a Public AS

- Or use private AS if agreed with the other ISP
- But some people don't like the "inconsistent-AS" which results from use of a private-AS


Address space comes from

- both upstreams or
- Regional Internet Registry
- Configuration concepts very similar

Inconsistent-AS?


- Viewing the prefixes originated by AS65534 in the Internet shows they appear to be originated by both AS210 and AS200
 - This is NOT bad
 - Nor is it illegal
- IOS command is

show ip bgp inconsistent-as

Two links to different ISPs

One link primary, the other link backup only

Announce /19 aggregate on each link

- primary link makes standard announcement
- backup link lengthens the AS PATH by using AS PATH prepend
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

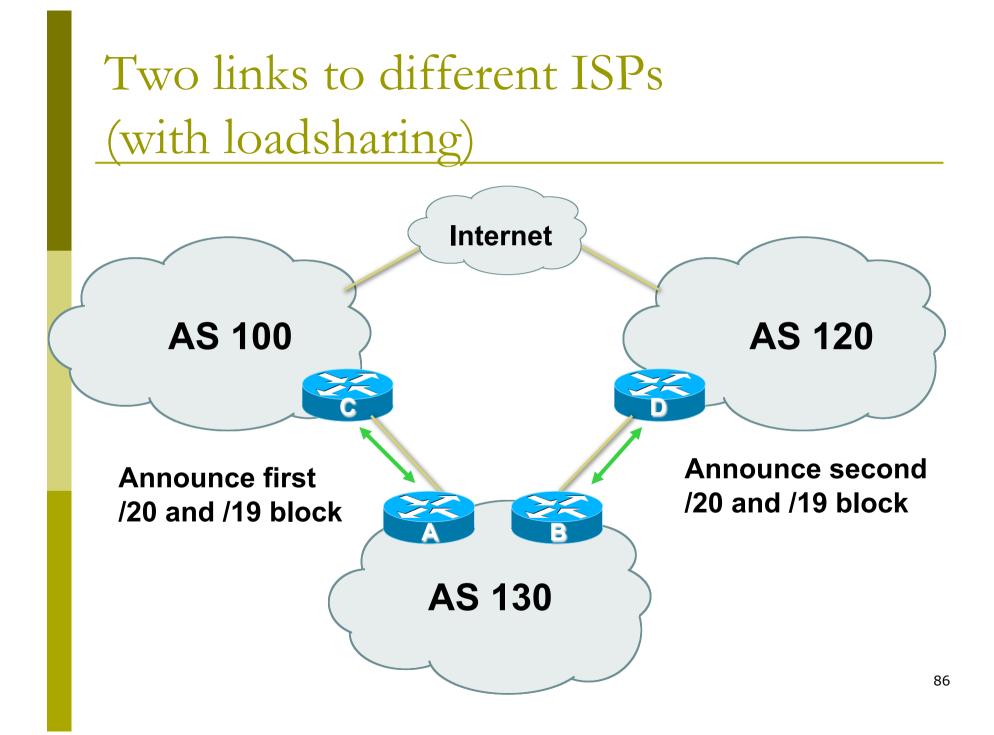
```
Router A Configuration
   router bgp 130
    network 121.10.0.0 mask 255.255.224.0
    neighbor 122.102.10.1 remote-as 100
    neighbor 122.102.10.1 prefix-list aggregate out
    neighbor 122.102.10.1 prefix-list default in
   ip prefix-list aggregate permit 121.10.0.0/19
   ip prefix-list default permit 0.0.0.0/0
   ip route 121.10.0.0 255.255.224.0 null0
```

```
Router B Configuration
router bgp 130
network 121.10.0.0 mask 255.255.224.0
neighbor 120.1.5.1 remote-as 120
neighbor 120.1.5.1 prefix-list aggregate out
neighbor 120.1.5.1 route-map routerD-out out
```

```
neighbor 120.1.5.1 prefix-list default in
```

```
neighbor 120.1.5.1 route-map routerD-in in
```

```
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
```


```
route-map routerD-out permit 10
set as-path prepend 130 130 130
```

```
route-map routerD-in permit 10 set local-preference 80
```

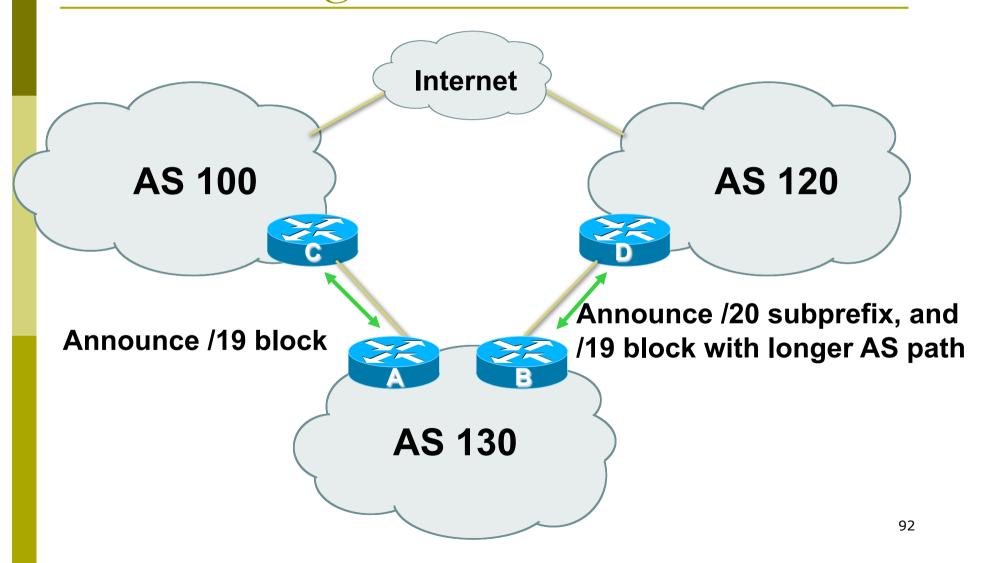
- Not a common situation as most sites tend to prefer using whatever capacity they have
 - (Useful when two competing ISPs agree to provide mutual backup to each other)
- But it shows the basic concepts of using local-prefs and AS-path prepends for engineering traffic in the chosen direction

Two links to different ISPs

With Redundancy and Loadsharing

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link
 - basic inbound loadsharing
- When one link fails, the announcement of the /19 aggregate via the other ISP ensures continued connectivity

```
Router A Configuration
   router bgp 130
    network 121.10.0.0 mask 255.255.224.0
    network 121.10.0.0 mask 255.255.240.0
    neighbor 122.102.10.1 remote-as 100
    neighbor 122.102.10.1 prefix-list firstblock out
    neighbor 122.102.10.1 prefix-list default in
   ip prefix-list default permit 0.0.0.0/0
   I
   ip prefix-list firstblock permit 121.10.0.0/20
   ip prefix-list firstblock permit 121.10.0.0/19
```


```
Router B Configuration
   router bgp 130
    network 121.10.0.0 mask 255.255.224.0
    network 121.10.16.0 mask 255.255.240.0
    neighbor 120.1.5.1 remote-as 120
    neighbor 120.1.5.1 prefix-list secondblock out
    neighbor 120.1.5.1 prefix-list default in
   ip prefix-list default permit 0.0.0.0/0
   I
   ip prefix-list secondblock permit 121.10.16.0/20
   ip prefix-list secondblock permit 121.10.0.0/19
```

Loadsharing in this case is very basic

- But shows the first steps in designing a load sharing solution
 - Start with a simple concept
 - And build on it...!

Two links to different ISPs

More Controlled Loadsharing

Announce /19 aggregate on each link

- On first link, announce /19 as normal
- On second link, announce /19 with longer AS PATH, and announce one /20 subprefix

 controls loadsharing between upstreams and the Internet

 Vary the subprefix size and AS PATH length until "perfect" loadsharing achieved
 Still require redundancy!

```
Router A Configuration
   router bgp 130
    network 121.10.0.0 mask 255.255.224.0
    neighbor 122.102.10.1 remote-as 100
    neighbor 122.102.10.1 prefix-list default in
    neighbor 122.102.10.1 prefix-list aggregate out
   ip prefix-list aggregate permit 121.10.0.0/19
   ip prefix-list default permit 0.0.0.0/0
   ip route 121.10.0.0 255.255.224.0 null0
```

```
Router B Configuration
   router bgp 130
    network 121.10.0.0 mask 255.255.224.0
    network 121.10.16.0 mask 255.255.240.0
    neighbor 120.1.5.1 remote-as 120
    neighbor 120.1.5.1 prefix-list default in
    neighbor 120.1.5.1 prefix-list subblocks out
    neighbor 120.1.5.1 route-map routerD out
   route-map routerD permit 10
    match ip address prefix-list aggregate
    set as-path prepend 130 130
   route-map routerD permit 20
   ip prefix-list subblocks permit 121.10.0.0/19 le 20<sub>95</sub>
   ip prefix-list aggregate permit 121.10.0.0/19
```

This example is more commonplace

- Shows how ISPs and end-sites subdivide address space frugally, as well as use the AS-PATH prepend concept to optimise the load sharing between different ISPs
- Notice that the /19 aggregate block is ALWAYS announced

Summary

Previous examples dealt with simple case

- Load balancing inbound traffic flow
 - Achieved by modifying outbound routing announcements
 - Aggregate is always announced
- We have not looked at outbound traffic flow
 - For now this is left as "nearest exit"

Simple Multihoming

AfNOG 2012 AR-E Workshop