

System Administration and IP Services

Performance Definitions and Measurement

These materials are licensed under the Creative Commons *Attribution-Noncommercial 3.0 Unported* license (http://creativecommons.org/licenses/by-nc/3.0/)

Metrics

Network performance metrics

- Channel capacity, nominal & effective
- Channel utilization
- Delay and *jitter*
- Packet loss and errors

Nominal Channel Capacity

The maximum number of bits that can be transmitted on a unit of time (eg: bits per second)

Depends on:

- Bandwidth of the physical medium
 - Cable
 - Electromagnetic waves
- Processing capacity for each transmission element
- Efficiency of algorithms in use to access medium
- Channel encoding and compression

Effective Channel Capacity

Always a fraction of the nominal channel capacity Dependent on:

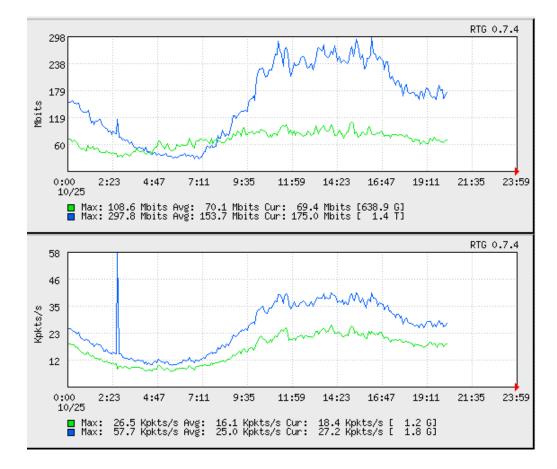
- Additional overhead of protocols in each layer
- Device limitations on both ends
 - Flow control algorithm efficiency, etc.
 - For example: TCP

Channel Utilization

What fraction of the nominal channel capacity is actually in use

Important!

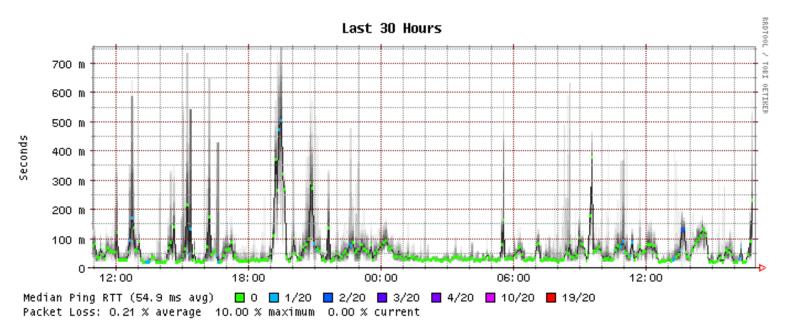
- Future planning
 - What utilization growth rate am I seeing?
 - For when should I plan on buying additional capacity?
 - Where should I invest for my updates?
- Problem resolution
 - Where are my bottlenecks, etc.


95th Percentile

- The smallest value that is larger than 95% of the values in a given sample
- This means that 95% of the time the channel utilization is equal to or less than this value
 - Or rather, the peaks are discarded from consideration
- Why is this important in networks?
 - Gives you an idea of the <u>standard</u>, <u>sustained channel</u> <u>utilization</u>.
 - ISPs use this measure to bill customers with "larger" connections.

95th Percentile

Bits per second vs Packets p.s.


End-to-end Delay

The time required to transmit a packet along its entire path

- Created by an application, handed over to the OS, passed to a network card (NIC), encoded, transmitted over a physical medium (copper, fibre, air), received by an intermediate device (switch, router), analyzed, retransmitted over another medium, etc.

- The most common measurement uses *ping* for total round-trip-time (RTT).

Historical Measurement of Delay

Probe: 20 ICMP Echo Pings (56 Bytes) every 300 seconds

created on Tue Oct 21 16:56:23 2008

Types of Delay

Causes of end-to-end delay:

- Processing delays
- Buffer delays
- Transmission delays
- Propagation delays

Processing Delay

Required time to analyze a packet header and decide where to send the packet (e.g. a routing decision)

Inside a router this depends on the number of entries in the routing table, the implementation of data structures, hardware in use, etc.

This can include error verification, such as IPv4, IPv6 header checksum calculations.

Queuing Delay

- The time a packet is enqueued until it is transmitted
- The number of packets waiting in the queue will depend on traffic intensity and of the type of traffic (bursty or sustained)
- Router queue algorithms try to adapt delays to specific preferences, or impose equal delay on all traffic.

Transmission Delay

The time required to push all the bits in a packet on the transmission medium in use For N=Number of bits, S=Size of packet, d=delay d = S/N

For example, to transmit 1024 bits using Fast Ethernet (100Mbps):

d = 1024/1x10e8 = 10.24 micro seconds

Propagation Delay

- Once a bit is 'pushed' on to the transmission medium, the time required for the bit to propagate to the end of its <u>physical trajectory</u>
- The velocity of propagation of the circuit depends mainly on the actual distance of the physical circuit
- In the majority of cases this is close to the speed of light.

For d = distance, s = propagation velocity

PD = d/s

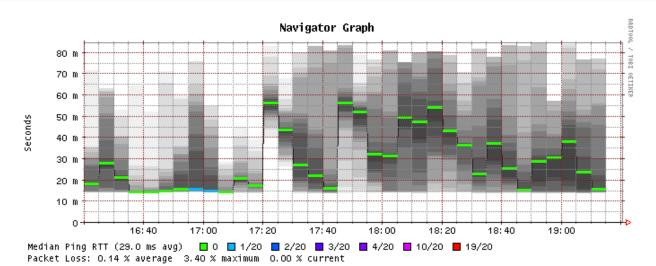
Transmission vs. Propagation

Can be confusing at first

Consider this example:

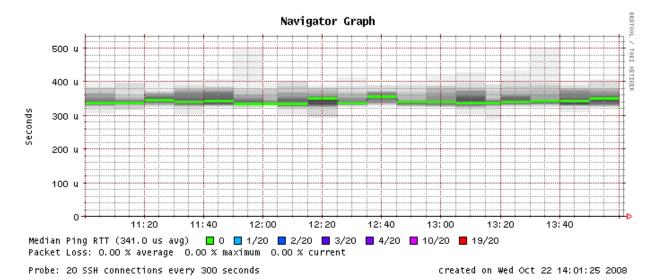
Two 100 Mbps circuits

- 1 km of optic fiber
- Via satellite with a distance of 30 km between the base and the satellite


For two packets of the same size which will have the larger transmission delay? Propagation delay?

Packet Loss

Occurs due to the fact that buffers are not infinite in size

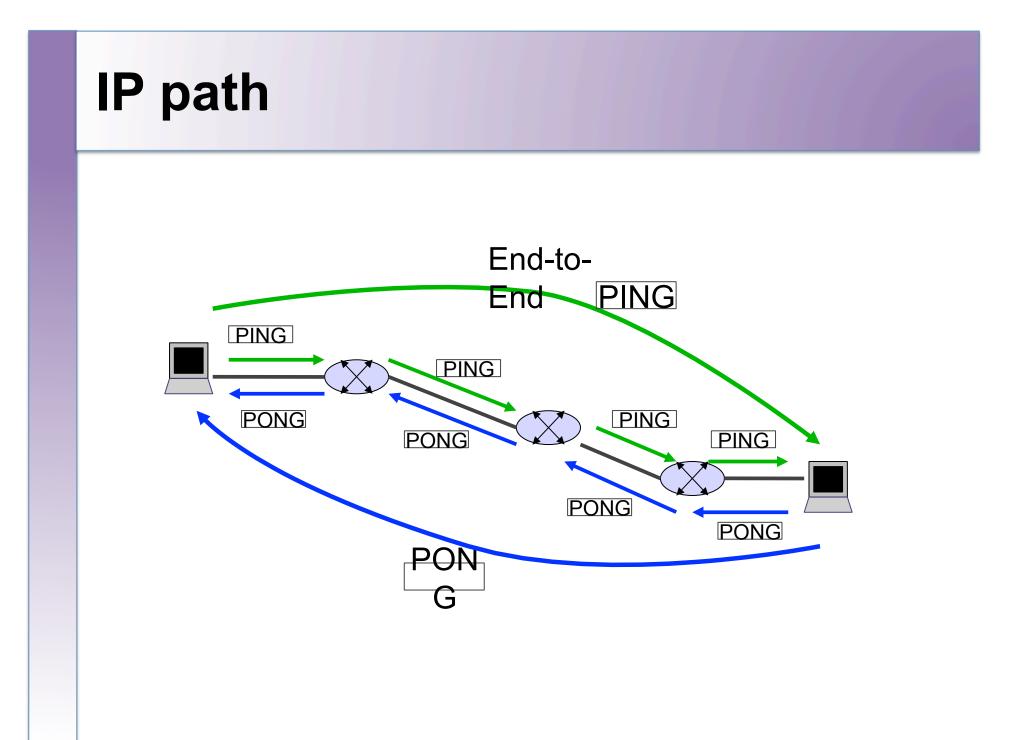

- When a packet arrives to a buffer that is full the packet is discarded.
- Packet loss, if it must be corrected, is resolved at higher levels in the network stack (transport or application layers)
- Loss correction using retransmission of packets can cause yet more congestion if some type of (flow) control is not used (to inform the source that it's pointless to keep sending more packets at the present time)

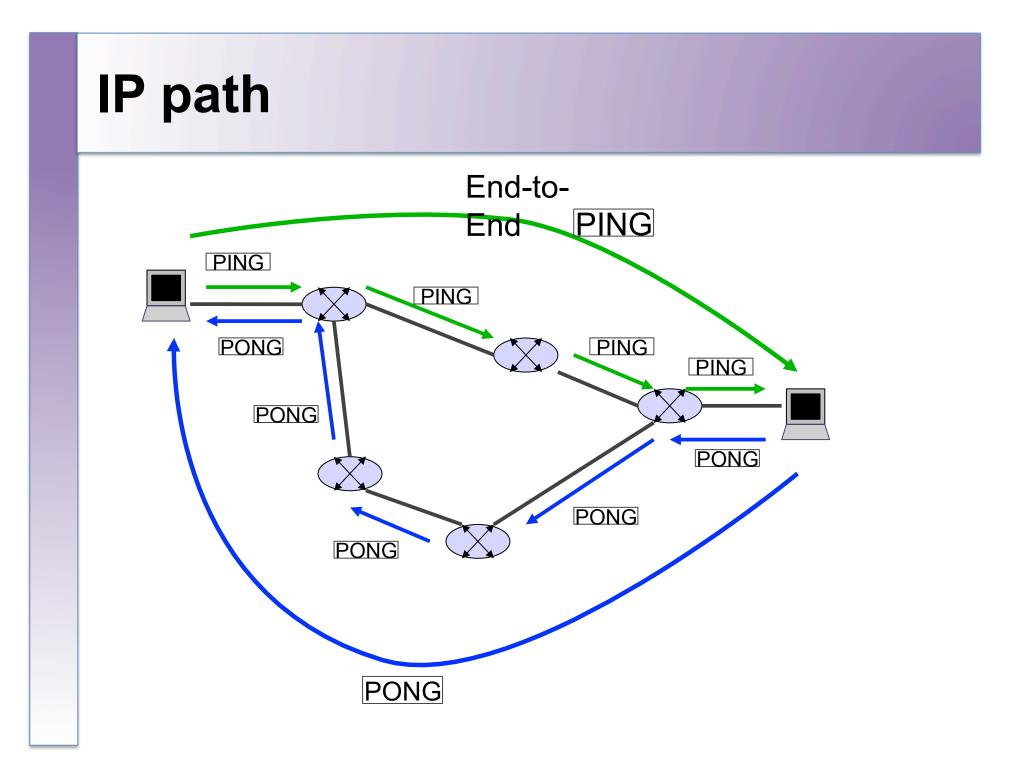
Jitter

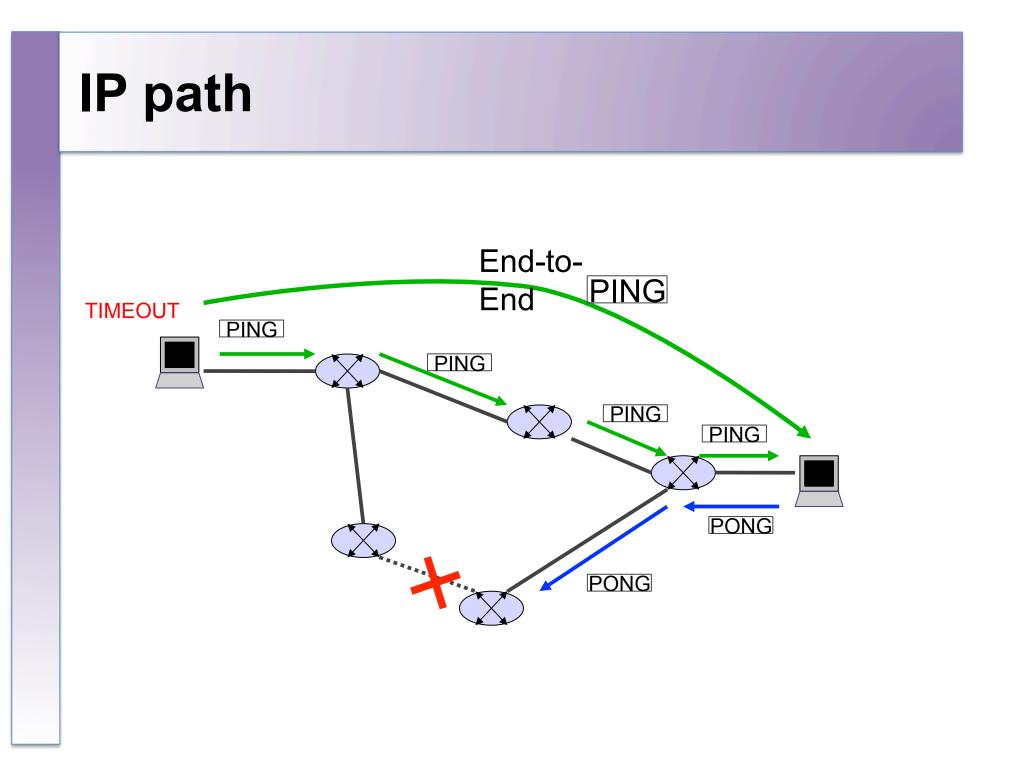
Probe: 20 ICMP Echo Pings (56 Bytes) every 300 seconds

created on Wed Jul 19 19:20:26 2006

Questions


?


IP End-to-End principle


- IP is an end-to-end protocol
- The network doesn't keep track of connections
- The host takes a decision on where to send each packet
- The network equipment takes a decision on where to forward packets *every time*

The path is not necessarily symmetric

Cost constraints, reconfiguration of the network, network failures can make the IP packets travel different routes going out and coming back.

Network configuration

- Done in the file: /etc/network/interfaces
- Either static or dynamic (DHCP)

Static

Network configuration

Dynamic

- # The primary network interface
- # nsrc.org
- auto eth0
- iface eth0 inet dhcp
- Addressing is received from a DHCP server.
- Classroom DHCP server is on noc.
- Can still be "static" if DHCP server knows MAC address

top

- Basic performance tool for Unix/Linux environments
- Periodically show a list of system performance statistics:
 - CPU use
 - RAM and SWAP memory usage
 - Load average (cpu utilization)
 - Information by process

top cont.

Information by process (most relevant columns shown):

- PID: Process ID
- USER: user running (owner) of the process
- %CPU: Percentage of CPU utilization by the process since the last sample
- %MEM: Percentage of physical memory (RAM) used by the process
- TIME: Total CPU time used by the process since it was started

top

top -	19:45:25	up	4:0	5, 1ι	user,	load	d (averaç	ge: 1.1	L8, 0.94,	0.88	
Tasks	: 122 tota	ι,	Ζ.	running	g, 110	5 slee	epi	ing,	0 sto	opped, 4	4 zombie	
Cpu(s): 27.7%us	, 13	. 3%	sy, 0	.2%ni	, 58.7	7%	id, (0.0%wa,	, 0.0%hi	, 0.2%si,	0.0%st
Mem:	2052028k	tot	al,	6120	020k (used,	1	144000	08k fre	ee, 86	784k buffer	s
Swap:	2588668k	tot	al,		0k (used,	1	258866	58k fre	ee, 172	348k cached	
PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	% MEM	TIME+	COMMAND	
22005	www-data	20	0	39796	13m	5512	S	68	0.7	0:15.72	php	
1033	mysql	20	0	315m	44m	6416	S	15	2.2	4:23.46	mysqld	
21964	root	20	0	2836	1132	876	R	1	0.1	0:00.83	top	
1012	dhcpd	20	0	5088	3128	1264	S	0	0.Z	0:04.64	dhcpd	
1282	nobody	20	0	5028	3000	2680	S	0	0.1	0:24.16	softflowd	
20984	root	20	0	11820	3728	2932	S	0	0.Z	0:00.21	sshd	
22011	www-data	20	0	40404	13m	5716	S	0	0.7	0:00.58	php	
1	root	20	0	3640	2044	1348	S	0	0.1	0:03.08	init	
2	root	20	0	0	0	0	S	0	0.0	0:00.00	kthreadd	
3	root	20	0	0	0	0	S	0	0.0	0:00.90	ksoftirqd/	0
4	root	20	0	0	0	0	S	0	0.0	0:05.41	kworker/0:	0
6	root	RT	0	0	0	0	S	0	0.0	0:00.00	migration/	0

Load Average

Average number of active processes in the last 1, 5 and 15 minutes

- A simple yet useful measurement
- Depending on the machine the acceptable range considered to be normal can vary:
 - Multi-processor machines can handle more active processes per unit of time (than single processor machines)

netstat

Show us information about:

- Network connections
- Routing tables
- Interface (NIC) statistics
- Multicast group members

netstat

Some useful options

- -n: Show addresses, ports and userids in numeric form
- -r: Routing table
- -s: Statistics by protocol
- -i: Status of interfaces
- -I: Listening sockets
- --tcp, --udp: Specify the protocol
- -A: Address family [inet | inet6 | unix | etc.]
- -p: Show the name of each process for each port
- -c: Show output/results continuously

netstat

Examples (follow along):

netstat -anr

Kernel IP routing table

Destination Gateway 192.168.5.128 0.0.0.0 255.255.255.128 U 0.0.0.0

192.168.5.129 0.0.0.0

Genmask

UG

Flags MSS Window irtt Iface 0 0 0 eth0 0 0 0 eth0

netstat -o -t

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address tcp 0 0 192.168.5.135:ssh keepalive (6754.95/0/0)

Foreign Address State 192.168.3.124:34155

Timer ESTABLISHED

# netstat -atv								
Active	Internet	connections (servers a	nd established)					
Proto	Recv-Q Se	nd-Q Local Address	Foreign Address	State				
tcp	0	0 *:ssh	* • *	LISTEN				
tcp	0	0 192.168.5.135:ssh	192.168.3.124:34155	ESTABLISHED				
tcp6	0	0 [::]:ssh	[::]:*	LISTEN				

netstat cont.

Examples:

netstat -tcp -listening --program

Active Internet connections (only servers)

Proto	Recv-Q	Send-Q	Local Address	Foreign Address	State	PID/Program name
tcp	0	0	*:5001	* • *	LISTEN	13598/iperf
tcp	0	0	localhost:mysql	* • *	LISTEN	5586/mysqld
tcp	0	0	*:www	* • *	LISTEN	7246/apache2
tcp	0	0	t60-2.local:domain	* • *	LISTEN	5378/named
tcp	0	0	t60-2.local:domain	* • *	LISTEN	5378/named
tcp	0	0	t60-2.local:domain	* • *	LISTEN	5378/named
tcp	0	0	localhost:domain	* • *	LISTEN	5378/named
tcp	0	0	localhost:ipp	* • *	LISTEN	5522/cupsd
tcp	0	0	localhost:smtp	* • *	LISTEN	6772/exim4
tcp	0	0	localhost:953	* • *	LISTEN	5378/named
tcp	0	0	*:https	* • *	LISTEN	7246/apache2
tcp6	0	0	[::]:ftp	[::]:*	LISTEN	7185/proftpd
tcp6	0	0	[::]:domain	[::]:*	LISTEN	5378/named
tcp6	0	0	[::]:ssh	[::]:*	LISTEN	5427/sshd
tcp6	0	0	[::]:3000	[::]:*	LISTEN	17644/ntop
tcp6	0	0	ip6-localhost:953	[::]:*	LISTEN	5378/named
tcp6	0	0	[::]:3005	[::]:*	LISTEN	17644/ntop

Isof (LiSt of Open Files)

lsof is particularly useful because in Unix
everything is a file: unix sockets, ip sockets,
directories, etc.

Allows you to associate open files by: -p: PID (Process ID)

-i : A network address (protocol:port)

-u: A user

lsof

Example:

 First, using *netstat -ln –tcp* determine that port 6010 is open and waiting for a connection (LISTEN)

# netstat -Intcp										
Active Internet connections (only servers)Proto Recv-Q Send-Q Local AddressForeign AddressState										
tcp	0	0 127.0.0.1:6010	0.0.0.0:*	LISTEN						
tcp	0	0 127.0.0.1:6011	0.0.0.0:*	LISTEN						

lsof

Determine what process has the port (6010) open and what other resources are being used:

<pre># lsof</pre>	-i tcp:	6010				
COMMAND	PID U	SER FD	TYPE	DEVICE	SIZE	NODE NAME
sshd	10301 r	coot 6u	IPv4	53603		TCP localhost.localdomain:x11-ssh-offset (LISTEN)
sshd	10301 r	root 7u	IPv6	53604		TCP [::1]:x11-ssh-offset (LISTEN)

<pre># lsof</pre>	-p 10	301						
COMMAND	PID	USER	FD	TYPE	DEVICE	SIZE	NODE	NAME
sshd	10301	root	cwd	DIR	8,2	4096	2	/
sshd	10301	root	rtd	DIR	8,2	4096	2	/
sshd	10301	root	txt	REG	8,2	379720	1422643	/usr/sbin/sshd
sshd	10301	root	mem	REG	8,2	32724	1437533	/usr/lib/libwrap.so.0.7.6
sshd	10301	root	mem	REG	8,2	15088	3080329	/lib/libutil-2.4.so
sshd	10301	root	mem	REG	8,2	75632	1414093	/usr/lib/libz.so.1.2.3
sshd	10301	root	mem	REG	8,2	96040	3080209	/lib/libnsl-2.4.so
sshd	10301	root	mem	REG	8,2	100208	1414578	/usr/lib/libgssapi_krb5.so.2.2
sshd	10301	root	mem	REG	8,2	11684	1414405	/usr/lib/libkrb5support.so.0.0
sshd	10301	root	mem	REG	8,2	10368	3080358	/lib/libsetrans.so.0
sshd	10301	root	mem	REG	8,2	7972	3080231	/lib/libcom_err.so.2.1
sshd	10301	root	mem	REG	8,2	30140	1420233	/usr/lib/libcrack.so.2.8.0
sshd	10301	root	mem	REG	8,2	11168	3080399	/lib/security/pam_succeed_if.so

lsof cont.

What network services am I running?

# ls	of -	·i					
COMMAND	PID	USER	FD	TYPE	DEVICE SI	IZE NODE	NAME
firefox	4429	hervey	50u	IPv4	1875852	TCP	192.168.179.139:56890-
>128.223.	60.21:ww	WW (ESTABLISH	ED				
named	5378	bind	20u	IPv6	13264	TCP	*:domain (LISTEN)
named	5378	bind	21u	IPv4	13267	TCP	localhost:domain (LISTEN)
sshd	5427	root	3u	IPv6	13302	TCP	*:ssh (LISTEN)
cupsd	5522	root	3u	IPv4	1983466	TCP	localhost:ipp (LISTEN)
mysqld	5586	mysql	10u	IPv4	13548	TCP	localhost:mysql (LISTEN)
snmpd	6477	snmp	8u	IPv4	14633	UDP	localhost:snmp
exim4	6772 E	ebian-exim	3u	IPv4	14675	TCP	localhost:smtp (LISTEN)
ntpd	6859	ntp	16u	IPv4	14743	UDP	*:ntp
ntpd	6859	ntp	17u	IPv6	14744	UDP	*:ntp
ntpd	6859	ntp	18u	IPv6	14746	UDP	[fe80::250:56ff:fec0:8]:ntp
ntpd	6859	ntp	19u	IPv6	14747	UDP	ip6-localhost:ntp
proftpd	7185	proftpd	1u	IPv6	15718	TCP	*:ftp (LISTEN)
apache2	7246	www-data	3u	IPv4	15915	TCP	*:www (LISTEN)
apache2	7246	www-data	4u	IPv4	15917	TCP	*:https (LISTEN)
iperf	13598	root	3u	IPv4	1996053	TCP	*:5001 (LISTEN)
apache2	27088	www-data	3u	IPv4	15915	TCP	*:www (LISTEN)
apache2	27088	www-data	4u	IPv4	15917	TCP	*:https (LISTEN)

- Show received packet headers by a given interface. Optionally filter using boolean expressions.
- Allows you to write information to a file for later analysis.
- Requires administrator (root) privileges to use since you must configure network interfaces (NICs) to be in "promiscuous" mode.

Some useful options:

- -i : Specify the interface (ex: -i eth0)
- -I: Make stdout line buffered (view as you capture)
- -v, -vv, -vvv: Display more information
- -n : Don't convert addresses to names (avoid DNS)
- -nn : Don't translate port numbers
- -w : Write raw packets to a file
- -r : Read packets from a file created by '-w'

Boolean expressions:

- Using the 'AND', 'OR', 'NOT' operators
- Expressions consist of one, or more, primtives, which consist of a qualifier and an ID (name or number):

```
Expression ::= [NOT] <primitive> [ AND | OR | NOT <primitive> ...]
```

```
<primitive> ::= <qualifier> <name|number>
```

```
<qualifier> ::= <type> | <address> | <protocol>
```

```
<type> ::= host | net | port | port range
```

```
<address> ::= src | dst
```

```
<protocol> ::= ether | fddi | tr | wlan | ip | ip6 | arp | rarp | decnet | tcp | udp
```

Examples:

- Show all HTTP traffic that originates from 10.10.0.250

tcpdump -lnXvvv port 80 and src host 10.10.0.250

 Show all traffic originating from 10.10.0.250 *except* SSH

tcpdump -lnXvvv src host 10.10.0.250 and not port 22

Bibliography

- Monitoring Virtual Memory with vmstat http://www.linuxjournal.com/article/8178
- How to use TCPDump http://www.erg.abdn.ac.uk/users/alastair/tcpdump.html
- Inux command tcpdump example
 http://smartproteam.com/linux-tutorials/linux-command-tcpdump/
- *simple usage of tcpdump* http://linux.byexamples.com/archives/283/simple-usage-of-tcpdump/
- TCPDUMP Command man page with examples http://www.cyberciti.biz/howto/question/man/tcpdump-man-page-with-examples.php
- TCPDump Tutorial http://inst.eecs.berkeley.edu/~ee122/fa06/projects/tcpdump-6up.pdf