
These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license
(http://creativecommons.org/licenses/by-nc/3.0/)

Performance Definitions and
Measurement

System Administration and IP
Services

Network performance metrics
  Channel capacity, nominal & effective
  Channel utilization
  Delay and jitter
  Packet loss and errors

Metrics

The maximum number of bits that can be transmitted on a
unit of time (eg: bits per second)

Depends on:

-  Bandwidth of the physical medium
  Cable
  Electromagnetic waves

-  Processing capacity for each transmission element
-  Efficiency of algorithms in use to access medium
-  Channel encoding and compression

Nominal Channel Capacity

Always a fraction of the nominal channel capacity
Dependent on:

-  Additional overhead of protocols in each layer
-  Device limitations on both ends

  Flow control algorithm efficiency, etc.
-  For example: TCP

Effective Channel Capacity

What fraction of the nominal channel capacity is
actually in use

Important!
-  Future planning

  What utilization growth rate am I seeing?
  For when should I plan on buying additional capacity?
  Where should I invest for my updates?

-  Problem resolution
  Where are my bottlenecks, etc.

Channel Utilization

95th Percentile
  The smallest value that is larger than 95% of the values in

a given sample

  This means that 95% of the time the channel utilization is
equal to or less than this value

-  Or rather, the peaks are discarded from consideration
  Why is this important in networks?

-  Gives you an idea of the standard, sustained channel
 utilization.
-  ISPs use this measure to bill customers with “larger”
 connections.

95th Percentile

95th Percentile

Bits per second vs Packets p.s.

The time required to transmit a packet along its entire path

-  Created by an application, handed over to the OS, passed
to a network card (NIC), encoded, transmitted over a
physical medium (copper, fibre, air), received by an
intermediate device (switch, router), analyzed, retransmitted
over another medium, etc.
-  The most common measurement uses ping for total round-
trip-time (RTT).

End-to-end Delay

Historical Measurement of Delay

Causes of end-to-end delay:
  Processing delays
  Buffer delays
  Transmission delays
  Propagation delays

Types of Delay

Required time to analyze a packet header and
decide where to send the packet (e.g. a routing
decision)

 Inside a router this depends on the number of entries
in the routing table, the implementation of data
structures, hardware in use, etc.

This can include error verification, such as IPv4,
IPv6 header checksum calculations.

Processing Delay

Queuing Delay

  The time a packet is enqueued until it is
transmitted

  The number of packets waiting in the queue will
depend on traffic intensity and of the type of
traffic (bursty or sustained)

  Router queue algorithms try to adapt delays to
specific preferences, or impose equal delay on
all traffic.

Queuing Delay

Transmission Delay

The time required to push all the bits in a
packet on the transmission medium in use

For N=Number of bits, S=Size of packet, d=delay
 d = S/N

For example, to transmit 1024 bits using Fast
Ethernet (100Mbps):

 d = 1024/1x10e8 = 10.24 micro seconds

Transmission Delay

•  Once a bit is 'pushed' on to the transmission
medium, the time required for the bit to propagate
to the end of its physical trajectory

•  The velocity of propagation of the circuit depends
mainly on the actual distance of the physical circuit

•  In the majority of cases this is close to the speed of
light.
 For d = distance, s = propagation velocity
 PD = d/s

Propagation Delay

Can be confusing at first
Consider this example:

Two 100 Mbps circuits
-  1 km of optic fiber
-  Via satellite with a distance of 30 km between the base
 and the satellite

For two packets of the same size which will
have the larger transmission delay?
Propagation delay?

Transmission vs. Propagation

Occurs due to the fact that buffers are not
infinite in size
-  When a packet arrives to a buffer that is full the packet

is discarded.
-  Packet loss, if it must be corrected, is resolved at

higher levels in the network stack (transport or
application layers)

-  Loss correction using retransmission of packets can
cause yet more congestion if some type of (flow)
control is not used (to inform the source that it's
pointless to keep sending more packets at the present
time)

Packet Loss

Jitter

Questions

?

•  IP is an end-to-end protocol
•  The network doesn't keep track of connections
•  The host takes a decision on where to send each

packet
•  The network equipment takes a decision on where

to forward packets every time

The path is not necessarily
symmetric

Cost constraints, reconfiguration of the network,
network failures can make the IP packets travel
different routes going out and coming back.

IP End-to-End principle

PING
PING

PING

End-to-
End

PING
PONG

PONG

PONG
PONG

PING

PON
G

IP path

PING
PING

PING

End-to-
End

PING
PONG

PONG
PONG

PONG

PING

PONG

PONG

IP path

PING
PING

PING

End-to-
End

PING

PONG

PONG

PING
TIMEOUT

IP path

Transmission Delay

•  Done in the file: /etc/network/interfaces
•  Either static or dynamic (DHCP)
Static

The primary network interface

nsrc.org

auto eth0

iface eth0 inet static

 address 128.223.157.19

 netmask 255.255.255.128

 network 128.223.157.0

 broadcast 128.223.157.127

 gateway 128.223.157.1

IPv6 address. This resolves to nsrc.org

iface eth0 inet6 static

 address 2001:0468:0d01:0103:0000:0000:80df:9d13

 netmask 64

 network 2001:468:D01:103::/64

 gateway 2001:468:D01:103::1

Network configuration

Transmission Delay

Dynamic
The primary network interface
nsrc.org
auto eth0
iface eth0 inet dhcp

•  Addressing is received from a DHCP server.
•  Classroom DHCP server is on noc.
•  Can still be “static” if DHCP server knows MAC address

Network configuration

top

•  Basic performance tool for Unix/Linux
environments

•  Periodically show a list of system
performance statistics:
– CPU use
– RAM and SWAP memory usage
– Load average (cpu utilization)
–  Information by process

top cont.

  Information by process (most relevant
columns shown):
-  PID: Process ID
-  USER: user running (owner) of the process
-  %CPU: Percentage of CPU utilization by the process

since the last sample
-  %MEM: Percentage of physical memory (RAM) used by

the process
-  TIME: Total CPU time used by the process since it was

started

top

Load Average

Average number of active processes in the
last 1, 5 and 15 minutes
-  A simple yet useful measurement
-  Depending on the machine the acceptable

range considered to be normal can vary:
  Multi-processor machines can handle more active

processes per unit of time (than single processor
machines)

netstat

Show us information about:
-  Network connections
-  Routing tables
-  Interface (NIC) statistics
-  Multicast group members

netstat

Some useful options
-n: Show addresses, ports and userids in numeric form

-r: Routing table

-s: Statistics by protocol

-i: Status of interfaces

-l: Listening sockets

--tcp, --udp: Specify the protocol

-A: Address family [inet | inet6 | unix | etc.]

-p: Show the name of each process for each port

-c: Show output/results continuously

netstat

Examples (follow along):

netstat -anr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.5.128 0.0.0.0 255.255.255.128 U 0 0 0 eth0
0.0.0.0 192.168.5.129 0.0.0.0 UG 0 0 0 eth0

netstat -o -t
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State Timer
tcp 0 0 192.168.5.135:ssh 192.168.3.124:34155 ESTABLISHED
keepalive (6754.95/0/0)

netstat -atv
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 192.168.5.135:ssh 192.168.3.124:34155 ESTABLISHED
tcp6 0 0 [::]:ssh [::]:* LISTEN

netstat cont.

Examples:
netstat –tcp –listening --program
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 *:5001 *:* LISTEN 13598/iperf
tcp 0 0 localhost:mysql *:* LISTEN 5586/mysqld
tcp 0 0 *:www *:* LISTEN 7246/apache2
tcp 0 0 t60-2.local:domain *:* LISTEN 5378/named
tcp 0 0 t60-2.local:domain *:* LISTEN 5378/named
tcp 0 0 t60-2.local:domain *:* LISTEN 5378/named
tcp 0 0 localhost:domain *:* LISTEN 5378/named
tcp 0 0 localhost:ipp *:* LISTEN 5522/cupsd
tcp 0 0 localhost:smtp *:* LISTEN 6772/exim4
tcp 0 0 localhost:953 *:* LISTEN 5378/named
tcp 0 0 *:https *:* LISTEN 7246/apache2
tcp6 0 0 [::]:ftp [::]:* LISTEN 7185/proftpd
tcp6 0 0 [::]:domain [::]:* LISTEN 5378/named
tcp6 0 0 [::]:ssh [::]:* LISTEN 5427/sshd
tcp6 0 0 [::]:3000 [::]:* LISTEN 17644/ntop
tcp6 0 0 ip6-localhost:953 [::]:* LISTEN 5378/named
tcp6 0 0 [::]:3005 [::]:* LISTEN 17644/ntop

lsof (LiSt of Open Files)

lsof is particularly useful because in Unix
everything is a file: unix sockets, ip sockets,
directories, etc.

Allows you to associate open files by:
-p: PID (Process ID)

-i : A network address (protocol:port)

-u: A user

lsof

Example:
-  First, using netstat -ln –tcp determine that port

6010 is open and waiting for a connection
(LISTEN)

netstat -ln --tcp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 127.0.0.1:6010 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:6011 0.0.0.0:* LISTEN

lsof

Determine what process has the port (6010) open
and what other resources are being used:

lsof -i tcp:6010
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
sshd 10301 root 6u IPv4 53603 TCP localhost.localdomain:x11-ssh-offset (LISTEN)
sshd 10301 root 7u IPv6 53604 TCP [::1]:x11-ssh-offset (LISTEN)

lsof -p 10301
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
sshd 10301 root cwd DIR 8,2 4096 2 /
sshd 10301 root rtd DIR 8,2 4096 2 /
sshd 10301 root txt REG 8,2 379720 1422643 /usr/sbin/sshd
sshd 10301 root mem REG 8,2 32724 1437533 /usr/lib/libwrap.so.0.7.6
sshd 10301 root mem REG 8,2 15088 3080329 /lib/libutil-2.4.so
sshd 10301 root mem REG 8,2 75632 1414093 /usr/lib/libz.so.1.2.3
sshd 10301 root mem REG 8,2 96040 3080209 /lib/libnsl-2.4.so
sshd 10301 root mem REG 8,2 100208 1414578 /usr/lib/libgssapi_krb5.so.2.2
sshd 10301 root mem REG 8,2 11684 1414405 /usr/lib/libkrb5support.so.0.0
sshd 10301 root mem REG 8,2 10368 3080358 /lib/libsetrans.so.0
sshd 10301 root mem REG 8,2 7972 3080231 /lib/libcom_err.so.2.1
sshd 10301 root mem REG 8,2 30140 1420233 /usr/lib/libcrack.so.2.8.0
sshd 10301 root mem REG 8,2 11168 3080399 /lib/security/pam_succeed_if.so
...

lsof cont.

What network services am I running?
lsof -i
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
firefox 4429 hervey 50u IPv4 1875852 TCP 192.168.179.139:56890-
>128.223.60.21:www (ESTABLISHED
named 5378 bind 20u IPv6 13264 TCP *:domain (LISTEN)
named 5378 bind 21u IPv4 13267 TCP localhost:domain (LISTEN)
sshd 5427 root 3u IPv6 13302 TCP *:ssh (LISTEN)
cupsd 5522 root 3u IPv4 1983466 TCP localhost:ipp (LISTEN)
mysqld 5586 mysql 10u IPv4 13548 TCP localhost:mysql (LISTEN)
snmpd 6477 snmp 8u IPv4 14633 UDP localhost:snmp
exim4 6772 Debian-exim 3u IPv4 14675 TCP localhost:smtp (LISTEN)
ntpd 6859 ntp 16u IPv4 14743 UDP *:ntp
ntpd 6859 ntp 17u IPv6 14744 UDP *:ntp
ntpd 6859 ntp 18u IPv6 14746 UDP [fe80::250:56ff:fec0:8]:ntp
ntpd 6859 ntp 19u IPv6 14747 UDP ip6-localhost:ntp
proftpd 7185 proftpd 1u IPv6 15718 TCP *:ftp (LISTEN)
apache2 7246 www-data 3u IPv4 15915 TCP *:www (LISTEN)
apache2 7246 www-data 4u IPv4 15917 TCP *:https (LISTEN)
...
iperf 13598 root 3u IPv4 1996053 TCP *:5001 (LISTEN)
apache2 27088 www-data 3u IPv4 15915 TCP *:www (LISTEN)
apache2 27088 www-data 4u IPv4 15917 TCP *:https (LISTEN)

tcpdump

  Show received packet headers by a given
interface. Optionally filter using boolean
expressions.

  Allows you to write information to a file for
later analysis.

  Requires administrator (root) privileges to
use since you must configure network
interfaces (NICs) to be in “promiscuous”
mode.

tcpdump

Some useful options:
-i : Specify the interface (ex: -i eth0)
-l : Make stdout line buffered (view as you
 capture)

-v, -vv, -vvv: Display more information
-n : Don't convert addresses to names
 (avoid DNS)

-nn : Don't translate port numbers
-w : Write raw packets to a file
-r : Read packets from a file created by '-w'

tcpdump

Boolean expressions:
-  Using the 'AND', 'OR', 'NOT' operators
-  Expressions consist of one, or more, primtives,

which consist of a qualifier and an ID (name or
number):

Expression ::= [NOT] <primitive> [AND | OR | NOT <primitive> ...]
<primitive> ::= <qualifier> <name|number>
<qualifier> ::= <type> | <address> | <protocol>
<type> ::= host | net | port | port range
<address> ::= src | dst
<protocol> ::= ether | fddi | tr | wlan | ip | ip6 | arp | rarp | decnet | tcp | udp

tcpdump

Examples:
-  Show all HTTP traffic that originates from

10.10.0.250

-  Show all traffic originating from
 10.10.0.250 except SSH

tcpdump -lnXvvv port 80 and src host 10.10.0.250

tcpdump -lnXvvv src host 10.10.0.250 and not port 22

Bibliography
•  Monitoring Virtual Memory with vmstat

http://www.linuxjournal.com/article/8178
•  How to use TCPDump

http://www.erg.abdn.ac.uk/users/alastair/tcpdump.html
•  linux command tcpdump example

http://smartproteam.com/linux-tutorials/linux-command-tcpdump/
•  simple usage of tcpdump

http://linux.byexamples.com/archives/283/simple-usage-of-tcpdump/
•  TCPDUMP Command man page with examples

http://www.cyberciti.biz/howto/question/man/tcpdump-man-page-with-examples.php

•  TCPDump Tutorial
http://inst.eecs.berkeley.edu/~ee122/fa06/projects/tcpdump-6up.pdf

