

RADIUS and FreeRADIUS

Chris Wilson, Aptivate Ltd.
Presented at AfNOG 2014

Based on “FreeRADIUS Install and
Configuration” by Frank A. Kuse

Download this presentation at:
http://github.com/afnog/sse/tree/master/radius

http://github.com/afnog/sse/tree/master/radius

Ingredients

 Theory
 What is RADIUS
 Why use RADIUS
 How RADIUS works
 User databases
 Attributes

 Practical
 Installing FreeRADIUS
 Adding RADIUS users
 Authenticating services that use PAM

What is RADIUS?

 Remote Authentication Dial In User Service
 Authentication

 “Who are you?”

 Authorization
 “What services am I allowed to give you?”

 Accounting
 “What did you do with my services while you were

using them?”

Why RADIUS?

 What are the alternatives?
 LDAP, Kerberos, Active Directory

 Advantages of RADIUS:
 Lightweight and efficient
 Supported by many clients, e.g. 802.1x, switches and

routers

 Disadvantages of RADIUS:
 Limited attribute set, limited use for desktop

authentication

How does RADIUS work?

 Authentication
 Password authentication, plain text and hashed
 Lookup in various user databases: passwd, SQL, text

 Authorization
 Using a set of rules or other templates

 Accounting
 Measuring, communicating and recording resources

accessed by user

 See Wikipedia for list of RFCs

RADIUS Architecture

 RADIUS protocol is between NAS and AAA server
 NAS controls access to protected resource

What does RADIUS do?

 NAS sends an Authentication-Request to AAA
server

 user name
 password hashed with secret shared
 some client specific information

 AAA server receives an Authentication-Request
 consults password databases:
 looks up the username and client-specific info
 retrieves unhashed password, and other Check Items
 hashes and compares with request contents
 sends an Access-Accept or Access-Reject packet

Why do we need RADIUS?

 Many services require password authentication!
 Users don't want to remember many passwords
 Easier to change password regularly or if

compromised
 Easier to secure a single password database
 Enables user-password auth with 802.1x
 Alternative to TACACS for network equipment
 Used for PPP authentication in ISPs (PAP/CHAP)

RADIUS message types

 Access-Request
 Access-Challenge
 Access-Accept
 Access-Reject
 Accounting-Request
 Accounting-Response
 Status-Server (experimental)
 Status-Client (experimental)

RADIUS attributes

 Name=Value
 User-Name
 User-Password
 NAS-IP-Address
 NAS-Port
 Service-Type
 NAS-Identifier
 Framed-Protocol
 Vendor-Specific
 Calling-Station-ID
 Called-Station-Id

RADIUS users database (file)

 Flat text file
 Easy to understand and edit
 Alternatives include Kerberos, LDAP and SQL

 Each user entry has three parts:
 Username
 List of check items (requirements)
 List of reply items (assignments)

Franko Password = 'testing12'

Service-Type = Frame-User,

Framed-protocol = PPP,

Framed-IP-Address = 192.168.1.4

Framed-IP-Netmask = 255.255.255.0

User entry example

 Username is Franko (case sensitive!)
 Check items (first line, all must match Access-Req):

 password = testing12

 Reply items (indented lines):
 Service-Type, Framed-IP-Address...

User name and check items

 Username
 First part of each user entry
 Up to 63 printable, non-space, ASCII characters

 Check Items
 Listed on the first line of a user entry, after username
 Multiple items are separated by commas
 Entry only matches if all check items are present in the

Access-Request and match
 Fall-Through = Yes allows server to try other entries

 First line (user name + check items) must not exceed
255 characters.

Operators in user entries

 The “=” and “==” operators mean different things in
check items and reply items!

 In check items:
 Use “=” for server configuration attributes (Password,

Auth-Type)
 Sets the value if not already set (set without override)

 Use “==” for RADIUS protocol attributes
 True if value is present and has the same value, never sets

 In reply items:
 Use “=” for RADIUS protocol attributes
 Do not use “==”, it is never valid

The Auth-Type check item

 Used to specify where (how) to lookup the
password:

 Local (in the users file)
 System (query the OS, /etc/shadow or PAM)
 SecurID

 Defaults to Local
 Example:
Franko Auth-Type = Local, Password = 'test123'

Password expiration

 Disable logins after a particular date
 Use the Expiration check item:
Franko Password=”test12”, Expiration=“May 12 2009”

 Date must be specified in “Mmm dd yyyy” format!
 Use the Password-Warning check item to warn the

user before their password expires:
VALUE Server-Config Password-Expiration 30

VALUE Server-Config Password-Warning 5

Checking the NAS IP address and port

 NAS-IP-Address check item
 Matches a particular NAS (by IP address)
 Will only match if the user connected to (Access-

Request came from) that specific NAS.

 NAS-Port-Type check item
 Will only match if the NAS reports that the user

connected to a specify the type of port
 Options include: Async, Sync, ISDN

 NAS-Port check item
 Will only match if the NAS reports that the user

connected to a specific port (ethernet or serial)

Reply items

 If all check items in the user entry are satisfied by
the access-request, then:

 Radius server sends an Access-Accept packet to the
NAS, containing the reply items

 Gives information to the NAS about the user
 For example, which IP address to assign to them

Reply items

 Service Type
 Must be specified
 Login-User → User connects via telnet, rlogin
 Framed-User → User uses PPP or SLIP for connection
 Outbound-User → User uses telnet for outbound

connections.

 Framed-User is by far the most used now
 Simple example:
Franko Auth-Type = System

Service-Type = Framed-User

The Service-Type reply item

 Service Type
 Must be specified
 Login-User → User connects via telnet, rlogin
 Framed-User → User uses PPP or SLIP for connection
 Outbound-User → User uses telnet for outbound

connections.

 Framed-User is by far the most used now
 Framed-User requires a Framed-Protocol:
Franko Auth-Type = System

 Service-Type = Framed-User

 Framed-Protocol = PPP

The Framed-IP-Address reply item

 Specifies the user's IP address to the NAS
 Set to 255.255.255.255 to force the NAS to

negotiate the address with the end-node (dial-in
user)

 Set to 255.255.255.254, or leave out, to force the
NAS to assign an IP address to the dial-in user from
the assigned address pool
Franko Auth-Type = System

 Service-Type = Framed-User

 Framed-Protocol = PPP

 Framed-IP-Address = 192.168.1.4

Netmask and Route reply items

 Use Framed-IP-Netmask to specify a netmask for
the user's IP address

 The default subnet mask is 255.255.255.255

 Use Framed-Route to add a route to NAS routing
table when service to the user begins

 Three pieces of information are required:
 the destination IP address
 gateway IP address
 metric

 For example:
 Framed-Route = “196.200.219.0 196.200.219.4 1”

Accounting records

 FreeRADIUS writes to its Detail log file
 Typically Start and Stop accounting records
Tue May 12 14:12:14 2009

Acct-Session-Id = “25000005”
User-Name = “franko”
NAS-IP-Address = 196.200.219.2
NAS-Port = 1
NAS-Port-Type = Async
Acct-Status-Type = Start
Acct-Authentic = RADIUS
Service-Type = Login-User
Login-Service = Telnet
Login-IP-Host = 196.200.219.254
Acct-Delay-Time = 0
Timestamp = 838763356

Accounting attributes

 Acct-Status-Type attribute
 indicates whether the record was sent when the

connection began (Start) or when it ended (Stop)

 Acct-Session-Id attribute
 ties the Start and Stop records together, indicating that

it's the same session

What is FreeRADIUS?

 The premier open source RADIUS server
 Similar to Livingston RADIUS 2.0
 Many additional features
 Free!

Practical exercise overview

 Build and install FreeRADIUS
 Configure and start FreeRADIUS
 Test authentication using FreeRADIUS
 Convert a service to authenticate using RADIUS

Installing Nagios RADIUS Plugin

 So we can check our RADIUS server with Nagios:
 fetch -o check_radius_adv_2006_08_23.tar.gz
'http://exchange.nagios.org/components/com_mtree/atta
chment.php?link_id=295&cf_id=29'

 mkdir check_radius

 cd check_radius

 tar xzvf ../check_radius_adv_2006_08_23.tar.gz

 make CC=cc LIBS=

 sudo cp check_radius_adv /usr/local/libexec/nagios

Configuring Nagios to monitor RADIUS

 So we'll know when our RADIUS server is working
 Add to /usr/local/etc/nagios/servers/pcXX.cfg:

➢ define command {
➢ command_name check_radius
➢ command_line $USER1$/check_radius_adv -r

$HOSTADDRESS$ -u afnog -p afnog -s testing123
➢ }
➢ define service {
➢ use generic-service
➢ host_name pcXX
➢ service_description RADIUS
➢ check_command check_radius
➢ }

 Then restart Nagios

Installing FreeRADIUS

 Installing a binary package:
 sudo pkg install freeradius3

 Or, if you want to install from ports (not this time!)
 /usr/ports/net/freeradius
 sudo make install
 Select any options you might need (none)

 Edit /etc/rc.conf (with sudo):
 Add this line: radiusd_enable="YES"

 Start FreeRADIUS server:
 sudo /usr/local/etc/rc.d/radiusd start

Checking FreeRADIUS

 Check that radiusd is running:
 sudo /usr/local/etc/rc.d/radiusd status
 radiusd is not running.

 Oh no! What's wrong?
 sudo /usr/local/sbin/radiusd -X
 …
 Refusing to start with libssl version OpenSSL
1.0.1e-freebsd …

 Security advisory CVE-2014-0160 (Heartbleed)

 Need to update FreeBSD first!

Updating FreeBSD

 Install FreeBSD updates:
 sudo freebsd-update fetch install

 Press q to close the file list

 Tell FreeRADIUS that it's been patched:
 Edit /usr/local/etc/raddb/radiusd.conf (with sudo)
 Find this line: allow_vulnerable_openssl = no
 Change the value no to 'CVE-2014-0160'

 Now start FreeRADIUS again:
 sudo /usr/local/etc/rc.d/radiusd start
 sudo /usr/local/etc/rc.d/radiusd status
 radiusd is running as pid XXXX.

Configuring and debugging

 You should review the configuration files carefully
 /usr/local/etc/raddb/*

 Debugging mode is extremely useful:
 sudo /usr/local/etc/rc.d/radiusd stop

 sudo radiusd -X (capital X)

 Output should end with:
 Ready to process requests.

 Server is now running in debugging mode
 Leave it running, and open another window/session on

the server to run more commands

Testing the default configuration

 FreeRADIUS should now respond to RADIUS
requests

 Test by running:
 radtest test test localhost 0 testing123

 What happens?

 Try a local user that does exist, with password:
 radtest afnog afnog localhost 0 testing123

 What happens?

 You should see the server receive the access-request
and respond with an access-reject in both cases

Testing Unix authentication

 Unix authentication is not working!
 We don't know why!
 Look carefully at the debug output

 WARNING: pap : No "known good" password
found for the user. Not setting Auth-Type.

 This means that no (enabled) user database recognises
the user.

Enabling PAM Authentication

 Check the list of enabled modules:
 sudo ls /usr/local/etc/raddb/mods-enabled

 See that pam is not listed
 Link /usr/local/etc/raddb/mods-enabled/pam:

 sudo ln -s ../mods-available/pam
/usr/local/etc/raddb/mods-enabled/pam

 Edit /usr/local/etc/raddb/sites-enabled/default
(using sudo):

 Find the line that says: # pam and remove the #
 Find the line that says: # unix and remove the #

 Not the one that just says “unix” without the hash!

Enabling PAM Authentication

 Restart the radiusd server, in the other window:
 Press Ctrl+C to stop the radiusd in debug mode
 Start it again with: sudo radiusd -X

 Test again:
 radtest afnog afnog localhost 0 testing123
 Received Access-Accept Id … from
127.0.0.1:1812 …

 Success!

Fixing the Nagios check (1)

 Does Nagios show that the service is up?

 Why not? It's running this command:
 $USER1$/check_radius_adv -r $HOSTADDRESS$ -u
afnog -p afnog -s testing123

 In fact that means:
 /usr/local/libexec/nagios/check_radius_adv -r
pcXX.sse.ws.afnog.org -u afnog -p afnog -s
testing123

 failed to receive a reply from the server,
authentication FAILED.

 Why no reply?

Fixing the Nagios check (2)

 If you weren't already running FreeRADIUS in
debug mode:

 sudo /usr/local/etc/rc.d/radiusd stop
 sudo radiusd -X

 Run the same check_radius_adv command again

 Check the debugging output:
 Ignoring request to auth address * port 1812
as server default from unknown client
196.200.219.1xx port 48550 proto udp

 Server ignored request from unknown client

Enabling Network Clients (1)

 Edit /usr/local/etc/raddb/clients.conf (with sudo):
 Add a new section:
 client localnet {
 ipaddr = 196.200.208.0
 netmask = 20
 secret = afnog
 }

 Restart FreeRADIUS:
 sudo /usr/local/etc/rc.d/radiusd restart

Enabling Network Clients (2)

 Test again:
 ~/check_radius/check_radius_adv -r
pcXX.sse.ws.afnog.org -u afnog -p afnog -s
afnog

 OK: Access ACCEPT. (code = 2)

 Success! Now check Nagios again.
 Also note that this still works:

 ~/check_radius/check_radius_adv -r localhost
-u afnog -p afnog -s testing123

 OK: Access ACCEPT. (code = 2)

 Why? What are the differences between them?

Secret (digression)

 From RFC 2865:
 The secret (password shared between the client and the

RADIUS server) SHOULD be at least as large and
unguessable as a well-chosen password. It is preferred
that the secret be at least 16 octets. This is to ensure a
sufficiently large range for the secret to provide
protection against exhaustive search attacks. The secret
MUST NOT be empty (length 0) since this would allow
packets to be trivially forged.

 How to generate a new, secure random key:
 sudo pkg install base64

 dd if=/dev/random bs=16 count=1 | base64

 eAiYEcnU/nxEsp6of5DaGQ== (for example)

Changing the Shared Secret

 We've been using the default shared secret,
testing123

 Not very secret, so let's change it!

 Edit /usr/local/etc/raddb/clients.conf
 Find the section client localhost
 Find the line secret = testing123
 Generate a new secret and set it here

 Restart FreeRADIUS and test with the new secret:
 ~/check_radius/check_radius_adv -r localhost
-u afnog -p afnog -s <your new secret>

Change the shared secret in Nagios

 What happened to our Nagios service when we
changed the secret?

 Nothing
 We changed the secret for localhost, not localnet
 Nagios is contacting the server using its hostname,

pcXX.sse.ws.afnog.org
 Uses the localnet client definition, whose secret didn't

change

Creating users in RADIUS

 So far we have only shared our Unix password
database using RADIUS

 Edit /usr/local/etc/raddb/users:
 Add this line at the beginning of the file:
 john Cleartext-Password = "Smith"

 Edit /usr/local/etc/raddb/sites-available/default:
 Find the authorize {…} section
 Find the users line in that section
 Move that line above the pam line

 Restart FreeRADIUS

Testing users in RADIUS

 Test using the radtest command:
 radtest john Smith pcXX.sse.ws.afnog.org 0
afnog

 rad_recv: Access-Accept packet …

 Success!

Configuring a client

 Now that we have the server working we can
configure a client to query the server

 We could configure a NAS device, if we had one
 Many authenticated services on FreeBSD (and

Linux) use PAM to authenticate users
 Pluggable Authentication Modules
 Allows any service to query many different password

databases
 By default just queries the system password database,

/etc/master.passwd
 The pam_radius module queries a RADIUS server

(AAA) for authentication

Using PAM with RADIUS (part 1)

 Configure the SSH service on our machine to
authenticate against our RADIUS server

 Keep a root shell open, in case you break it!

 Edit /etc/pam.d/sshd
 Find the line: auth required pam_unix.so
 Add another line before it:

 auth sufficient pam_radius.so

 Try connecting with SSH to your machine
 ssh afnog@pcXX.sse.ws.afnog.org

 Do you notice any difference in the password prompt?
 ssh john@pcXX.sse.ws.afnog.org – this will fail

Using PAM with RADIUS (part 2)

 What's wrong with authenticating as RADIUS user?
 tail /var/log/auth.log may give you a clue
 The configuration file /etc/radius.conf is missing
 PAM doesn't know which RADIUS server to use, or

with what shared secret

 Create the file /etc/radius.conf, adding this line:
 auth 127.0.0.1 <your long secret>

 SSH requires that the user exists on the local system
 Otherwise you'll see: Invalid user john from ...
 Create the user by running: sudo pw useradd john
 Try ssh john@pcXX.sse.ws.afnog.org again

What have we achieved?

 FreeBSD RADIUS server answers authentication
requests:

 Unix password files/database
 Flat text file (users file)

 SSH login authentication using RADIUS passwords
 We can deploy new services without having to

create separate password databases

What more could we do?

 Store credentials in:
 a database (MySQL, PostgreSQL)
 LDAP
 Kerberos

 Integrate with network access control (802.1x)
 Generate accounting data

 so that we could bill for timed access to resources
 for example a wireless hotspot or a hotel network

 Generate reports from accounting data

Bibliography

 FreeRADIUS website
 http://www.freeradius.org/

 FreeBSD PAM
 http://www.freebsd.org/doc/en_US.ISO8859-

1/articles/pam/index.html

 PAM RADIUS man page
 http://www.freebsd.org/cgi/man.cgi?

query=pam_radius&sektion=8

	Slide 1
	Slide 2
	Slide2
	Slide 4
	Slide4
	Slide6
	Slide7
	Slide8
	Slide11
	Slide14
	Slide17
	Slide18
	Slide19
	Slide 14
	Slide21
	Slide24
	Slide25
	Slide20
	Slide 19
	Slide 20
	Slide31
	Slide32
	Slide39
	Slide41
	Slide43
	Slide42
	Slide44
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide46
	Slide48
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide49
	Slide50
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide52
	Slide53
	Slide54
	Slide57
	Slide58
	Slide59

