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What is RADIUS?

 Remote Authentication Dial In User Service
 Authentication

 “Who are you?”

 Authorization
 “What services am I allowed to give you?”

 Accounting
 “What did you do with my services while you were 

using them?”



Why RADIUS?

 What are the alternatives?
 LDAP, Kerberos, Active Directory

 Advantages of RADIUS:
 Lightweight and efficient
 Supported by many clients, e.g. 802.1x, switches and 

routers

 Disadvantages of RADIUS:
 Limited attribute set, limited use for desktop 

authentication



How does RADIUS work?

 Authentication
 Password authentication, plain text and hashed
 Lookup in various user databases: passwd, SQL, text

 Authorization
 Using a set of rules or other templates

 Accounting
 Measuring, communicating and recording resources 

accessed by user

 See Wikipedia for list of RFCs



RADIUS Architecture

 RADIUS protocol is between NAS and AAA server
 NAS controls access to protected resource



What does RADIUS do?

 NAS sends an Authentication-Request to AAA 
server

 user name
 password hashed with secret shared
 some client specific information

 AAA server receives an Authentication-Request
 consults password databases:
 looks up the username and client-specific info
 retrieves unhashed password, and other Check Items
 hashes and compares with request contents
 sends an Access-Accept or Access-Reject packet



Why do we need RADIUS?

 Many services require password authentication!
 Users don't want to remember many passwords
 Easier to change password regularly or if 

compromised
 Easier to secure a single password database
 Enables user-password auth with 802.1x
 Alternative to TACACS for network equipment
 Used for PPP authentication in ISPs (PAP/CHAP)



RADIUS message types

 Access-Request
 Access-Challenge
 Access-Accept
 Access-Reject
 Accounting-Request
 Accounting-Response
 Status-Server (experimental)
 Status-Client (experimental)



RADIUS attributes

 Name=Value
 User-Name
 User-Password
 NAS-IP-Address
 NAS-Port
 Service-Type
 NAS-Identifier
 Framed-Protocol
 Vendor-Specific
 Calling-Station-ID
 Called-Station-Id



RADIUS users database (file)

 Flat text file
 Easy to understand and edit
 Alternatives include Kerberos, LDAP and SQL 

 Each user entry has three parts:
 Username
 List of check items (requirements)
 List of reply items (assignments)



Franko Password = 'testing12'

Service-Type = Frame-User,

Framed-protocol = PPP,

Framed-IP-Address = 192.168.1.4

Framed-IP-Netmask = 255.255.255.0

User entry example

 Username is Franko (case sensitive!)
 Check items (first line, all must match Access-Req):

 password = testing12

 Reply items (indented lines):
 Service-Type, Framed-IP-Address...



User name and check items

 Username
 First part of each user entry
 Up to 63 printable, non-space, ASCII characters

 Check Items
 Listed on the first line of a user entry, after username
 Multiple items are separated by commas
 Entry only matches if all check items are present in the 

Access-Request and match
 Fall-Through = Yes allows server to try other entries

 First line (user name + check items) must not exceed 
255 characters.



Operators in user entries

 The “=” and “==” operators mean different things in 
check items and reply items!

 In check items:
 Use “=” for server configuration attributes (Password, 

Auth-Type)
 Sets the value if not already set (set without override)

 Use “==” for RADIUS protocol attributes
 True if value is present and has the same value, never sets

 In reply items:
 Use “=” for RADIUS protocol attributes
 Do not use “==”, it is never valid



The Auth-Type check item

 Used to specify where (how) to lookup the 
password:

 Local (in the users file)
 System (query the OS, /etc/shadow or PAM) 
 SecurID

 Defaults to Local
 Example:
Franko Auth-Type = Local, Password = 'test123'



Password expiration

 Disable logins after a particular date
 Use the Expiration check item:
Franko Password=”test12”, Expiration=“May 12 2009”

 Date must be specified in “Mmm dd yyyy” format!
 Use the Password-Warning check item to warn the 

user before their password expires:
VALUE Server-Config  Password-Expiration 30

VALUE Server-Config  Password-Warning 5



Checking the NAS IP address and port

 NAS-IP-Address check item
 Matches a particular NAS (by IP address)
 Will only match if the user connected to (Access-

Request came from) that specific NAS.

 NAS-Port-Type check item
 Will only match if the NAS reports that the user 

connected to a specify the type of port
 Options include: Async, Sync, ISDN

 NAS-Port check item
 Will only match if the NAS reports that the user 

connected to a specific port (ethernet or serial)



Reply items

 If all check items in the user entry are satisfied by 
the access-request, then:

 Radius server sends an Access-Accept packet to the 
NAS, containing the reply items

 Gives information to the NAS about the user
 For example, which IP address to assign to them



Reply items

 Service Type
 Must be specified
 Login-User → User connects via telnet, rlogin
 Framed-User → User uses PPP or SLIP for connection
 Outbound-User → User uses telnet for outbound 

connections.

 Framed-User is by far the most used now
 Simple example:
Franko Auth-Type = System

Service-Type = Framed-User



The Service-Type reply item

 Service Type
 Must be specified
 Login-User → User connects via telnet, rlogin
 Framed-User → User uses PPP or SLIP for connection
 Outbound-User → User uses telnet for outbound 

connections.

 Framed-User is by far the most used now
 Framed-User requires a Framed-Protocol:
Franko  Auth-Type = System

        Service-Type = Framed-User

        Framed-Protocol = PPP



The Framed-IP-Address reply item

 Specifies the user's IP address to the NAS
 Set to 255.255.255.255 to force the NAS to 

negotiate the address with the end-node (dial-in 
user)

 Set to 255.255.255.254, or leave out, to force the 
NAS to assign an IP address to the dial-in user from 
the assigned address pool
Franko  Auth-Type = System

        Service-Type = Framed-User

        Framed-Protocol = PPP

        Framed-IP-Address = 192.168.1.4



Netmask and Route reply items

 Use Framed-IP-Netmask to specify a netmask for 
the user's IP address

 The default subnet mask is 255.255.255.255

 Use Framed-Route to add a route to NAS routing 
table when service to the user begins

 Three pieces of information are required:
 the destination IP address
 gateway IP address
 metric

 For example:
 Framed-Route = “196.200.219.0 196.200.219.4 1”



Accounting records

 FreeRADIUS writes to its Detail log file
 Typically Start and Stop accounting records
Tue May 12 14:12:14 2009

Acct-Session-Id = “25000005”
User-Name = “franko”
NAS-IP-Address = 196.200.219.2
NAS-Port = 1
NAS-Port-Type = Async
Acct-Status-Type = Start
Acct-Authentic = RADIUS
Service-Type = Login-User
Login-Service = Telnet
Login-IP-Host = 196.200.219.254
Acct-Delay-Time = 0
Timestamp = 838763356



Accounting attributes

 Acct-Status-Type attribute
 indicates whether the record was sent when the 

connection began (Start) or when it ended (Stop)

 Acct-Session-Id attribute
 ties the Start and Stop records together, indicating that 

it's the same session



What is FreeRADIUS?

 The premier open source RADIUS server
 Similar to Livingston RADIUS 2.0
 Many additional features
 Free!



Practical exercise overview

 Build and install FreeRADIUS
 Configure and start FreeRADIUS
 Test authentication using FreeRADIUS
 Convert a service to authenticate using RADIUS



Installing Nagios RADIUS Plugin

 So we can check our RADIUS server with Nagios:
 fetch -o check_radius_adv_2006_08_23.tar.gz 
'http://exchange.nagios.org/components/com_mtree/atta
chment.php?link_id=295&cf_id=29'

 mkdir check_radius

 cd check_radius

 tar xzvf ../check_radius_adv_2006_08_23.tar.gz

 make CC=cc LIBS=

 sudo cp check_radius_adv /usr/local/libexec/nagios



Configuring Nagios to monitor RADIUS

 So we'll know when our RADIUS server is working
 Add to /usr/local/etc/nagios/servers/pcXX.cfg:

➢ define command {
➢         command_name    check_radius
➢         command_line    $USER1$/check_radius_adv -r 

$HOSTADDRESS$ -u afnog -p afnog -s testing123
➢ }
➢ define service {
➢         use generic-service
➢         host_name pcXX
➢         service_description RADIUS
➢         check_command check_radius
➢ }

 Then restart Nagios



Installing FreeRADIUS

 Installing a binary package:
 sudo pkg install freeradius3

 Or, if you want to install from ports (not this time!)
 /usr/ports/net/freeradius
 sudo make install
 Select any options you might need (none)

 Edit /etc/rc.conf (with sudo):
 Add this line: radiusd_enable="YES"

 Start FreeRADIUS server:
 sudo /usr/local/etc/rc.d/radiusd start



Checking FreeRADIUS

 Check that radiusd is running:
 sudo /usr/local/etc/rc.d/radiusd status
 radiusd is not running.

 Oh no! What's wrong?
 sudo /usr/local/sbin/radiusd -X
 …
 Refusing to start with libssl version OpenSSL 
1.0.1e-freebsd …

 Security advisory CVE-2014-0160 (Heartbleed)

 Need to update FreeBSD first!



Updating FreeBSD

 Install FreeBSD updates:
 sudo freebsd-update fetch install

 Press q to close the file list

 Tell FreeRADIUS that it's been patched:
 Edit /usr/local/etc/raddb/radiusd.conf (with sudo)
 Find this line: allow_vulnerable_openssl = no
 Change the value no to 'CVE-2014-0160'

 Now start FreeRADIUS again:
 sudo /usr/local/etc/rc.d/radiusd start
 sudo /usr/local/etc/rc.d/radiusd status
 radiusd is running as pid XXXX.



Configuring and debugging

 You should review the configuration files carefully
 /usr/local/etc/raddb/*

 Debugging mode is extremely useful:
 sudo /usr/local/etc/rc.d/radiusd stop

 sudo radiusd -X (capital X)

 Output should end with:
 Ready to process requests.

 Server is now running in debugging mode
 Leave it running, and open another window/session on 

the server to run more commands



Testing the default configuration

 FreeRADIUS should now respond to RADIUS 
requests

 Test by running:
 radtest test test localhost 0 testing123

 What happens?

 Try a local user that does exist, with password:
 radtest afnog afnog localhost 0 testing123

 What happens?

 You should see the server receive the access-request 
and respond with an access-reject in both cases



Testing Unix authentication

 Unix authentication is not working!
 We don't know why!
 Look carefully at the debug output

 WARNING: pap : No "known good" password 
found for the user.  Not setting Auth-Type.

 This means that no (enabled) user database recognises 
the user.



Enabling PAM Authentication

 Check the list of enabled modules:
 sudo ls /usr/local/etc/raddb/mods-enabled

 See that pam is not listed
 Link /usr/local/etc/raddb/mods-enabled/pam:

 sudo ln -s ../mods-available/pam 
/usr/local/etc/raddb/mods-enabled/pam

 Edit /usr/local/etc/raddb/sites-enabled/default 
(using sudo):

 Find the line that says: # pam and remove the #
 Find the line that says: # unix and remove the #

 Not the one that just says “unix” without the hash!



Enabling PAM Authentication

 Restart the radiusd server, in the other window:
 Press Ctrl+C to stop the radiusd in debug mode
 Start it again with: sudo radiusd -X

 Test again:
 radtest afnog afnog localhost 0 testing123
 Received Access-Accept Id … from 
127.0.0.1:1812 …

 Success!



Fixing the Nagios check (1)

 Does Nagios show that the service is up?


 Why not? It's running this command:
 $USER1$/check_radius_adv -r $HOSTADDRESS$ -u 
afnog -p afnog -s testing123

 In fact that means:
 /usr/local/libexec/nagios/check_radius_adv -r 
pcXX.sse.ws.afnog.org -u afnog -p afnog -s 
testing123

 failed to receive a reply from the server, 
authentication FAILED.

 Why no reply?



Fixing the Nagios check (2)

 If you weren't already running FreeRADIUS in 
debug mode:

 sudo /usr/local/etc/rc.d/radiusd stop
 sudo radiusd -X

 Run the same check_radius_adv command again

 Check the debugging output:
 Ignoring request to auth address * port 1812 
as server default from unknown client 
196.200.219.1xx port 48550 proto udp

 Server ignored request from unknown client



Enabling Network Clients (1)

 Edit /usr/local/etc/raddb/clients.conf (with sudo):
 Add a new section:
 client localnet {
         ipaddr = 196.200.208.0
         netmask = 20
         secret = afnog
 }

 Restart FreeRADIUS:
 sudo /usr/local/etc/rc.d/radiusd restart



Enabling Network Clients (2)

 Test again:
 ~/check_radius/check_radius_adv -r 
pcXX.sse.ws.afnog.org -u afnog -p afnog -s 
afnog

 OK: Access ACCEPT. (code = 2)

 Success! Now check Nagios again.
 Also note that this still works:

 ~/check_radius/check_radius_adv -r localhost 
-u afnog -p afnog -s testing123

 OK: Access ACCEPT. (code = 2)

 Why? What are the differences between them?



Secret (digression)

 From RFC 2865:
 The secret (password shared between the client and the 

RADIUS server) SHOULD be at least as large and 
unguessable as a well-chosen password.  It is preferred 
that the secret be at least 16 octets.  This is to ensure a 
sufficiently large range for the secret to provide 
protection against exhaustive search attacks. The secret 
MUST NOT be empty (length 0) since this would allow 
packets to be trivially forged.

 How to generate a new, secure random key:
 sudo pkg install base64

 dd if=/dev/random bs=16 count=1 | base64

 eAiYEcnU/nxEsp6of5DaGQ== (for example)



Changing the Shared Secret

 We've been using the default shared secret, 
testing123

 Not very secret, so let's change it!

 Edit /usr/local/etc/raddb/clients.conf
 Find the section client localhost
 Find the line secret = testing123
 Generate a new secret and set it here

 Restart FreeRADIUS and test with the new secret:
 ~/check_radius/check_radius_adv -r localhost 
-u afnog -p afnog -s <your new secret>



Change the shared secret in Nagios

 What happened to our Nagios service when we 
changed the secret?

 Nothing
 We changed the secret for localhost, not localnet
 Nagios is contacting the server using its hostname, 

pcXX.sse.ws.afnog.org
 Uses the localnet client definition, whose secret didn't 

change



Creating users in RADIUS

 So far we have only shared our Unix password 
database using RADIUS

 Edit /usr/local/etc/raddb/users:
 Add this line at the beginning of the file:
 john    Cleartext-Password = "Smith"

 Edit /usr/local/etc/raddb/sites-available/default:
 Find the authorize {…} section
 Find the users line in that section
 Move that line above the pam line

 Restart FreeRADIUS



Testing users in RADIUS

 Test using the radtest command:
 radtest john Smith pcXX.sse.ws.afnog.org 0 
afnog

 rad_recv: Access-Accept packet …

 Success!



Configuring a client

 Now that we have the server working we can 
configure a client to query the server

 We could configure a NAS device, if we had one
 Many authenticated services on FreeBSD (and 

Linux) use PAM to authenticate users
 Pluggable Authentication Modules
 Allows any service to query many different password 

databases
 By default just queries the system password database, 

/etc/master.passwd
 The pam_radius module queries a RADIUS server 

(AAA) for authentication



Using PAM with RADIUS (part 1)

 Configure the SSH service on our machine to 
authenticate against our RADIUS server

 Keep a root shell open, in case you break it!

 Edit /etc/pam.d/sshd
 Find the line: auth required pam_unix.so
 Add another line before it:

 auth sufficient pam_radius.so

 Try connecting with SSH to your machine
 ssh afnog@pcXX.sse.ws.afnog.org

 Do you notice any difference in the password prompt?
 ssh john@pcXX.sse.ws.afnog.org – this will fail



Using PAM with RADIUS (part 2)

 What's wrong with authenticating as RADIUS user?
 tail /var/log/auth.log may give you a clue
 The configuration file /etc/radius.conf is missing
 PAM doesn't know which RADIUS server to use, or 

with what shared secret

 Create the file /etc/radius.conf, adding this line:
 auth 127.0.0.1 <your long secret>

 SSH requires that the user exists on the local system
 Otherwise you'll see: Invalid user john from ...
 Create the user by running: sudo pw useradd john
 Try ssh john@pcXX.sse.ws.afnog.org again



What have we achieved?

 FreeBSD RADIUS server answers authentication 
requests:

 Unix password files/database
 Flat text file (users file)

 SSH login authentication using RADIUS passwords
 We can deploy new services without having to 

create separate password databases



What more could we do?                                   
        

 Store credentials in:
 a database (MySQL, PostgreSQL)
 LDAP
 Kerberos

 Integrate with network access control (802.1x)
 Generate accounting data

 so that we could bill for timed access to resources
 for example a wireless hotspot or a hotel network

 Generate reports from accounting data
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