

RADIUS and FreeRADIUS

Chris Wilson, Aptivate Ltd.
Presented at AfNOG 2014

Based on “FreeRADIUS Install and
Configuration” by Frank A. Kuse

Download this presentation at:
http://github.com/afnog/sse/tree/master/radius

http://github.com/afnog/sse/tree/master/radius

Ingredients

 Theory
 What is RADIUS
 Why use RADIUS
 How RADIUS works
 User databases
 Attributes

 Practical
 Installing FreeRADIUS
 Adding RADIUS users
 Authenticating services that use PAM

What is RADIUS?

 Remote Authentication Dial In User Service
 Authentication

 “Who are you?”

 Authorization
 “What services am I allowed to give you?”

 Accounting
 “What did you do with my services while you were

using them?”

Why RADIUS?

 What are the alternatives?
 LDAP, Kerberos, Active Directory

 Advantages of RADIUS:
 Lightweight and efficient
 Supported by many clients, e.g. 802.1x, switches and

routers

 Disadvantages of RADIUS:
 Limited attribute set, limited use for desktop

authentication

How does RADIUS work?

 Authentication
 Password authentication, plain text and hashed
 Lookup in various user databases: passwd, SQL, text

 Authorization
 Using a set of rules or other templates

 Accounting
 Measuring, communicating and recording resources

accessed by user

 See Wikipedia for list of RFCs

RADIUS Architecture

 RADIUS protocol is between NAS and AAA server
 NAS controls access to protected resource

What does RADIUS do?

 NAS sends an Authentication-Request to AAA
server

 user name
 password hashed with secret shared
 some client specific information

 AAA server receives an Authentication-Request
 consults password databases:
 looks up the username and client-specific info
 retrieves unhashed password, and other Check Items
 hashes and compares with request contents
 sends an Access-Accept or Access-Reject packet

Why do we need RADIUS?

 Many services require password authentication!
 Users don't want to remember many passwords
 Easier to change password regularly or if

compromised
 Easier to secure a single password database
 Enables user-password auth with 802.1x
 Alternative to TACACS for network equipment
 Used for PPP authentication in ISPs (PAP/CHAP)

RADIUS message types

 Access-Request
 Access-Challenge
 Access-Accept
 Access-Reject
 Accounting-Request
 Accounting-Response
 Status-Server (experimental)
 Status-Client (experimental)

RADIUS attributes

 Name=Value
 User-Name
 User-Password
 NAS-IP-Address
 NAS-Port
 Service-Type
 NAS-Identifier
 Framed-Protocol
 Vendor-Specific
 Calling-Station-ID
 Called-Station-Id

RADIUS users database (file)

 Flat text file
 Easy to understand and edit
 Alternatives include Kerberos, LDAP and SQL

 Each user entry has three parts:
 Username
 List of check items (requirements)
 List of reply items (assignments)

Franko Password = 'testing12'

Service-Type = Frame-User,

Framed-protocol = PPP,

Framed-IP-Address = 192.168.1.4

Framed-IP-Netmask = 255.255.255.0

User entry example

 Username is Franko (case sensitive!)
 Check items (first line, all must match Access-Req):

 password = testing12

 Reply items (indented lines):
 Service-Type, Framed-IP-Address...

User name and check items

 Username
 First part of each user entry
 Up to 63 printable, non-space, ASCII characters

 Check Items
 Listed on the first line of a user entry, after username
 Multiple items are separated by commas
 Entry only matches if all check items are present in the

Access-Request and match
 Fall-Through = Yes allows server to try other entries

 First line (user name + check items) must not exceed
255 characters.

Operators in user entries

 The “=” and “==” operators mean different things in
check items and reply items!

 In check items:
 Use “=” for server configuration attributes (Password,

Auth-Type)
 Sets the value if not already set (set without override)

 Use “==” for RADIUS protocol attributes
 True if value is present and has the same value, never sets

 In reply items:
 Use “=” for RADIUS protocol attributes
 Do not use “==”, it is never valid

The Auth-Type check item

 Used to specify where (how) to lookup the
password:

 Local (in the users file)
 System (query the OS, /etc/shadow or PAM)
 SecurID

 Defaults to Local
 Example:
Franko Auth-Type = Local, Password = 'test123'

Password expiration

 Disable logins after a particular date
 Use the Expiration check item:
Franko Password=”test12”, Expiration=“May 12 2009”

 Date must be specified in “Mmm dd yyyy” format!
 Use the Password-Warning check item to warn the

user before their password expires:
VALUE Server-Config Password-Expiration 30

VALUE Server-Config Password-Warning 5

Checking the NAS IP address and port

 NAS-IP-Address check item
 Matches a particular NAS (by IP address)
 Will only match if the user connected to (Access-

Request came from) that specific NAS.

 NAS-Port-Type check item
 Will only match if the NAS reports that the user

connected to a specify the type of port
 Options include: Async, Sync, ISDN

 NAS-Port check item
 Will only match if the NAS reports that the user

connected to a specific port (ethernet or serial)

Reply items

 If all check items in the user entry are satisfied by
the access-request, then:

 Radius server sends an Access-Accept packet to the
NAS, containing the reply items

 Gives information to the NAS about the user
 For example, which IP address to assign to them

Reply items

 Service Type
 Must be specified
 Login-User → User connects via telnet, rlogin
 Framed-User → User uses PPP or SLIP for connection
 Outbound-User → User uses telnet for outbound

connections.

 Framed-User is by far the most used now
 Simple example:
Franko Auth-Type = System

Service-Type = Framed-User

The Service-Type reply item

 Service Type
 Must be specified
 Login-User → User connects via telnet, rlogin
 Framed-User → User uses PPP or SLIP for connection
 Outbound-User → User uses telnet for outbound

connections.

 Framed-User is by far the most used now
 Framed-User requires a Framed-Protocol:
Franko Auth-Type = System

 Service-Type = Framed-User

 Framed-Protocol = PPP

The Framed-IP-Address reply item

 Specifies the user's IP address to the NAS
 Set to 255.255.255.255 to force the NAS to

negotiate the address with the end-node (dial-in
user)

 Set to 255.255.255.254, or leave out, to force the
NAS to assign an IP address to the dial-in user from
the assigned address pool
Franko Auth-Type = System

 Service-Type = Framed-User

 Framed-Protocol = PPP

 Framed-IP-Address = 192.168.1.4

Netmask and Route reply items

 Use Framed-IP-Netmask to specify a netmask for
the user's IP address

 The default subnet mask is 255.255.255.255

 Use Framed-Route to add a route to NAS routing
table when service to the user begins

 Three pieces of information are required:
 the destination IP address
 gateway IP address
 metric

 For example:
 Framed-Route = “196.200.219.0 196.200.219.4 1”

Accounting records

 FreeRADIUS writes to its Detail log file
 Typically Start and Stop accounting records
Tue May 12 14:12:14 2009

Acct-Session-Id = “25000005”
User-Name = “franko”
NAS-IP-Address = 196.200.219.2
NAS-Port = 1
NAS-Port-Type = Async
Acct-Status-Type = Start
Acct-Authentic = RADIUS
Service-Type = Login-User
Login-Service = Telnet
Login-IP-Host = 196.200.219.254
Acct-Delay-Time = 0
Timestamp = 838763356

Accounting attributes

 Acct-Status-Type attribute
 indicates whether the record was sent when the

connection began (Start) or when it ended (Stop)

 Acct-Session-Id attribute
 ties the Start and Stop records together, indicating that

it's the same session

What is FreeRADIUS?

 The premier open source RADIUS server
 Similar to Livingston RADIUS 2.0
 Many additional features
 Free!

Practical exercise overview

 Build and install FreeRADIUS
 Configure and start FreeRADIUS
 Test authentication using FreeRADIUS
 Convert a service to authenticate using RADIUS

Installing Nagios RADIUS Plugin

 So we can check our RADIUS server with Nagios:
 fetch -o check_radius_adv_2006_08_23.tar.gz
'http://exchange.nagios.org/components/com_mtree/atta
chment.php?link_id=295&cf_id=29'

 mkdir check_radius

 cd check_radius

 tar xzvf ../check_radius_adv_2006_08_23.tar.gz

 make CC=cc LIBS=

 sudo cp check_radius_adv /usr/local/libexec/nagios

Configuring Nagios to monitor RADIUS

 So we'll know when our RADIUS server is working
 Add to /usr/local/etc/nagios/servers/pcXX.cfg:

➢ define command {
➢ command_name check_radius
➢ command_line $USER1$/check_radius_adv -r

$HOSTADDRESS$ -u afnog -p afnog -s testing123
➢ }
➢ define service {
➢ use generic-service
➢ host_name pcXX
➢ service_description RADIUS
➢ check_command check_radius
➢ }

 Then restart Nagios

Installing FreeRADIUS

 Installing a binary package:
 sudo pkg install freeradius3

 Or, if you want to install from ports (not this time!)
 /usr/ports/net/freeradius
 sudo make install
 Select any options you might need (none)

 Edit /etc/rc.conf (with sudo):
 Add this line: radiusd_enable="YES"

 Start FreeRADIUS server:
 sudo /usr/local/etc/rc.d/radiusd start

Checking FreeRADIUS

 Check that radiusd is running:
 sudo /usr/local/etc/rc.d/radiusd status
 radiusd is not running.

 Oh no! What's wrong?
 sudo /usr/local/sbin/radiusd -X
 …
 Refusing to start with libssl version OpenSSL
1.0.1e-freebsd …

 Security advisory CVE-2014-0160 (Heartbleed)

 Need to update FreeBSD first!

Updating FreeBSD

 Install FreeBSD updates:
 sudo freebsd-update fetch install

 Press q to close the file list

 Tell FreeRADIUS that it's been patched:
 Edit /usr/local/etc/raddb/radiusd.conf (with sudo)
 Find this line: allow_vulnerable_openssl = no
 Change the value no to 'CVE-2014-0160'

 Now start FreeRADIUS again:
 sudo /usr/local/etc/rc.d/radiusd start
 sudo /usr/local/etc/rc.d/radiusd status
 radiusd is running as pid XXXX.

Configuring and debugging

 You should review the configuration files carefully
 /usr/local/etc/raddb/*

 Debugging mode is extremely useful:
 sudo /usr/local/etc/rc.d/radiusd stop

 sudo radiusd -X (capital X)

 Output should end with:
 Ready to process requests.

 Server is now running in debugging mode
 Leave it running, and open another window/session on

the server to run more commands

Testing the default configuration

 FreeRADIUS should now respond to RADIUS
requests

 Test by running:
 radtest test test localhost 0 testing123

 What happens?

 Try a local user that does exist, with password:
 radtest afnog afnog localhost 0 testing123

 What happens?

 You should see the server receive the access-request
and respond with an access-reject in both cases

Testing Unix authentication

 Unix authentication is not working!
 We don't know why!
 Look carefully at the debug output

 WARNING: pap : No "known good" password
found for the user. Not setting Auth-Type.

 This means that no (enabled) user database recognises
the user.

Enabling PAM Authentication

 Check the list of enabled modules:
 sudo ls /usr/local/etc/raddb/mods-enabled

 See that pam is not listed
 Link /usr/local/etc/raddb/mods-enabled/pam:

 sudo ln -s ../mods-available/pam
/usr/local/etc/raddb/mods-enabled/pam

 Edit /usr/local/etc/raddb/sites-enabled/default
(using sudo):

 Find the line that says: # pam and remove the #
 Find the line that says: # unix and remove the #

 Not the one that just says “unix” without the hash!

Enabling PAM Authentication

 Restart the radiusd server, in the other window:
 Press Ctrl+C to stop the radiusd in debug mode
 Start it again with: sudo radiusd -X

 Test again:
 radtest afnog afnog localhost 0 testing123
 Received Access-Accept Id … from
127.0.0.1:1812 …

 Success!

Fixing the Nagios check (1)

 Does Nagios show that the service is up?


 Why not? It's running this command:
 $USER1$/check_radius_adv -r $HOSTADDRESS$ -u
afnog -p afnog -s testing123

 In fact that means:
 /usr/local/libexec/nagios/check_radius_adv -r
pcXX.sse.ws.afnog.org -u afnog -p afnog -s
testing123

 failed to receive a reply from the server,
authentication FAILED.

 Why no reply?

Fixing the Nagios check (2)

 If you weren't already running FreeRADIUS in
debug mode:

 sudo /usr/local/etc/rc.d/radiusd stop
 sudo radiusd -X

 Run the same check_radius_adv command again

 Check the debugging output:
 Ignoring request to auth address * port 1812
as server default from unknown client
196.200.219.1xx port 48550 proto udp

 Server ignored request from unknown client

Enabling Network Clients (1)

 Edit /usr/local/etc/raddb/clients.conf (with sudo):
 Add a new section:
 client localnet {
 ipaddr = 196.200.208.0
 netmask = 20
 secret = afnog
 }

 Restart FreeRADIUS:
 sudo /usr/local/etc/rc.d/radiusd restart

Enabling Network Clients (2)

 Test again:
 ~/check_radius/check_radius_adv -r
pcXX.sse.ws.afnog.org -u afnog -p afnog -s
afnog

 OK: Access ACCEPT. (code = 2)

 Success! Now check Nagios again.
 Also note that this still works:

 ~/check_radius/check_radius_adv -r localhost
-u afnog -p afnog -s testing123

 OK: Access ACCEPT. (code = 2)

 Why? What are the differences between them?

Secret (digression)

 From RFC 2865:
 The secret (password shared between the client and the

RADIUS server) SHOULD be at least as large and
unguessable as a well-chosen password. It is preferred
that the secret be at least 16 octets. This is to ensure a
sufficiently large range for the secret to provide
protection against exhaustive search attacks. The secret
MUST NOT be empty (length 0) since this would allow
packets to be trivially forged.

 How to generate a new, secure random key:
 sudo pkg install base64

 dd if=/dev/random bs=16 count=1 | base64

 eAiYEcnU/nxEsp6of5DaGQ== (for example)

Changing the Shared Secret

 We've been using the default shared secret,
testing123

 Not very secret, so let's change it!

 Edit /usr/local/etc/raddb/clients.conf
 Find the section client localhost
 Find the line secret = testing123
 Generate a new secret and set it here

 Restart FreeRADIUS and test with the new secret:
 ~/check_radius/check_radius_adv -r localhost
-u afnog -p afnog -s <your new secret>

Change the shared secret in Nagios

 What happened to our Nagios service when we
changed the secret?

 Nothing
 We changed the secret for localhost, not localnet
 Nagios is contacting the server using its hostname,

pcXX.sse.ws.afnog.org
 Uses the localnet client definition, whose secret didn't

change

Creating users in RADIUS

 So far we have only shared our Unix password
database using RADIUS

 Edit /usr/local/etc/raddb/users:
 Add this line at the beginning of the file:
 john Cleartext-Password = "Smith"

 Edit /usr/local/etc/raddb/sites-available/default:
 Find the authorize {…} section
 Find the users line in that section
 Move that line above the pam line

 Restart FreeRADIUS

Testing users in RADIUS

 Test using the radtest command:
 radtest john Smith pcXX.sse.ws.afnog.org 0
afnog

 rad_recv: Access-Accept packet …

 Success!

Configuring a client

 Now that we have the server working we can
configure a client to query the server

 We could configure a NAS device, if we had one
 Many authenticated services on FreeBSD (and

Linux) use PAM to authenticate users
 Pluggable Authentication Modules
 Allows any service to query many different password

databases
 By default just queries the system password database,

/etc/master.passwd
 The pam_radius module queries a RADIUS server

(AAA) for authentication

Using PAM with RADIUS (part 1)

 Configure the SSH service on our machine to
authenticate against our RADIUS server

 Keep a root shell open, in case you break it!

 Edit /etc/pam.d/sshd
 Find the line: auth required pam_unix.so
 Add another line before it:

 auth sufficient pam_radius.so

 Try connecting with SSH to your machine
 ssh afnog@pcXX.sse.ws.afnog.org

 Do you notice any difference in the password prompt?
 ssh john@pcXX.sse.ws.afnog.org – this will fail

Using PAM with RADIUS (part 2)

 What's wrong with authenticating as RADIUS user?
 tail /var/log/auth.log may give you a clue
 The configuration file /etc/radius.conf is missing
 PAM doesn't know which RADIUS server to use, or

with what shared secret

 Create the file /etc/radius.conf, adding this line:
 auth 127.0.0.1 <your long secret>

 SSH requires that the user exists on the local system
 Otherwise you'll see: Invalid user john from ...
 Create the user by running: sudo pw useradd john
 Try ssh john@pcXX.sse.ws.afnog.org again

What have we achieved?

 FreeBSD RADIUS server answers authentication
requests:

 Unix password files/database
 Flat text file (users file)

 SSH login authentication using RADIUS passwords
 We can deploy new services without having to

create separate password databases

What more could we do?

 Store credentials in:
 a database (MySQL, PostgreSQL)
 LDAP
 Kerberos

 Integrate with network access control (802.1x)
 Generate accounting data

 so that we could bill for timed access to resources
 for example a wireless hotspot or a hotel network

 Generate reports from accounting data

Bibliography

 FreeRADIUS website
 http://www.freeradius.org/

 FreeBSD PAM
 http://www.freebsd.org/doc/en_US.ISO8859-

1/articles/pam/index.html

 PAM RADIUS man page
 http://www.freebsd.org/cgi/man.cgi?

query=pam_radius&sektion=8

	Slide 1
	Slide 2
	Slide2
	Slide 4
	Slide4
	Slide6
	Slide7
	Slide8
	Slide11
	Slide14
	Slide17
	Slide18
	Slide19
	Slide 14
	Slide21
	Slide24
	Slide25
	Slide20
	Slide 19
	Slide 20
	Slide31
	Slide32
	Slide39
	Slide41
	Slide43
	Slide42
	Slide44
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide46
	Slide48
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide49
	Slide50
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide52
	Slide53
	Slide54
	Slide57
	Slide58
	Slide59

