# Introduction to WiFi Networking



Marco Zennaro Ermanno Pietrosemoli

### Goals

The goal of this lecture is to introduce:

- 802.11 family of radio protocols
- 802.11 radio channels
- Wireless network topologies
- WiFi modes of operation
- Strategies for routing network traffic

# ISM / UNII bands

Most commercial wireless devices (mobile phones, television, radio, etc.) use licensed radio frequencies. Large organizations pay licensing fees for the right to use those radio frequencies.

WiFi uses unlicensed spectrum. License fees are not usually required to operate WiFi equipment.

The Industrial, Scientific and Medical (ISM) bands allow for unlicensed use of 2.4-2.5 GHz, 5.8 GHz, and many other (non-WiFi) frequencies.

### 802.11 family

| IEEE 802.11<br>VARIANT | FREQUENCY BANDS USED                                                               |
|------------------------|------------------------------------------------------------------------------------|
| 802.11a                | 5GHz                                                                               |
| 802.11b                | 2.4GHz                                                                             |
| 802.11g                | 2.4GHz                                                                             |
| 802.11n                | 2.4 & 5 GHz                                                                        |
| 802.11ac               | Below 6GHz                                                                         |
| 802.11ad               | Up to 60 GHz                                                                       |
| 802.11af               | TV white space (below 1 GHz)                                                       |
| 802.11ah               | 700 MHz, 860MHz, 902 MHz, etc. ISM bands dependent upon country<br>and allocations |

### 802.11 family

| LOWER<br>FREQUENCY<br>MHZ | UPPER<br>FREQUENCY<br>MHZ | COMMENTS                                                                                                                                                                                                                                                                                                   |
|---------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2400                      | 2500                      | Often referred to as the 2.4 GHz band, this spectrum is the most widely used of the bands available for Wi-Fi. Used by 802.11b, g, & n. It can carry a maximum of three non-overlapping channels.                                                                                                          |
| 5725                      | 5875                      | This 5 GHz band or 5.8 GHz band provides additional bandwidth, and being at a higher frequency, equipment costs are slightly higher, although usage, and hence interference is less.It can be used by 802.11a & n. It can carry up to 23 non-overlapping channels, but gives a shorter range than 2.4 GHz. |

### Wireless networking protocols

The 802.11 family of radio protocols are commonly referred to as WiFi.

- 802.11a supports up to 54 Mbps using the 5 GHz unlicensed bands.
- **802.11b** supports up to 11 Mbps using the 2.4 GHz unlicensed band.
- 802.11g supports up to 54 Mbps using the 2.4 GHz unlicensed band.
- 802.11n supports up to 600 Mbps using the 2.4 GHz and 5 GHz unlicensed bands.

• **802.16** (WiMAX) is not 802.11 WiFi! It is a completely different technology that uses a variety of licensed and unlicensed frequencies.

### Compatibility of standards AP

|   |         | 802.11a      | 802.IIb         | 802.11g         | 802.11n        | 802.16 |
|---|---------|--------------|-----------------|-----------------|----------------|--------|
|   | 802.11a | Yes          |                 |                 | Yes<br>@5GHz   |        |
| - | 802.IIb |              | Yes             | Yes<br>(slower) | Yes<br>@2.4GHz |        |
|   | 802.11g |              | Yes<br>(slower) | Yes             | Yes<br>@2.4GHz |        |
| - | 802.11n | Yes<br>@5GHz | Yes<br>@2.4GHz  | Yes<br>@2.4GHz  | Yes            |        |
|   | 802.16  |              |                 |                 |                | Yes    |

### IEEE 802.11 AC

Improved performance by means of:

- Two or up to 8 Spatial streams (MIMO)
- Higher order modulation types (up to 256 QAM)
- Wider Channels bandwidth (up to 160 MHz)

### IEEE 802.11 AC: MIMO



### IEEE 802.11 AC, 256 constellation



### Data rates

Note that the "data rates" quoted in the WiFi specifications refer to the raw radio symbol rate, not the actual TCP/IP throughput rate.

The difference is called **protocol overhead**, and is needed by the WiFi protocol to manage collisions, retransmissions, and general management of the link.

### Data rates

- A good rule of thumb is to **divide the radio symbol rate by two** to obtain the maximum practical TCP/IP throughput.
- For example, a 54 Mbps 802.11a link has a maximum practical throughput of roughly 25 Mbps. An 11 Mbps 802.11b link has a maximum throughput of about 5 Mbps.
- 802.11ac offers a maximum theoretical data rate of 6 Gbps.

### MAC layer: CSMA vs. TDMA

802.11 WiFi uses *Carrier Sense Multiple Access* (*CSMA*) to avoid transmission collisions. Before a node may transmit, it must first listen for transmissions from other radios. The node may only transmit when the channel becomes idle.

Other technologies (such as WiMAX, Nstreme, and AirMAX) use *Time Division Multiple Access* (*TDMA*) instead. TDMA divides access to a given channel into multiple time slots, and assigns these slots to each node on the network. Each mode transmits only in its assigned slot, thereby avoiding collisions.

> 1 3

### Layer one

WiFi devices must agree on several parameters before they can communicate with each other. These parameters must be properly configured to establish "layer one" connectivity:

| TCP/IP Protocol Stack |             |  |  |
|-----------------------|-------------|--|--|
| 5                     | Application |  |  |
| 4                     | Transport   |  |  |
| 3                     | Internet    |  |  |
| 2                     | Data Link   |  |  |
| I                     | Physical    |  |  |

- Radio channel
- Radio operating mode
- Network name
- Security fortures

### 802.11 WiFi Channels

| CHANNEL NUMBER | LOWER FREQUENCY<br>MHZ | CENTER FREQUENCY<br>MHZ | UPPER FREQUENCY<br>MHZ |
|----------------|------------------------|-------------------------|------------------------|
| 1              | 2401                   | 2412                    | 2423                   |
| 2              | 2406                   | 2417                    | 2428                   |
| 3              | 2411                   | 2422                    | 2433                   |
| 4              | 2416                   | 2427                    | 2438                   |
| 5              | 2421                   | 2432                    | 2443                   |
| 6              | 2426                   | 2437                    | 2448                   |
| 7              | 2431                   | 2442                    | 2453                   |
| 8              | 2436                   | 2447                    | 2458                   |
| 9              | 2441                   | 2452                    | 2463                   |
| 10             | 2446                   | 2457                    | 2468                   |
| 11             | 2451                   | 2462                    | 2473                   |
| 12             | 2456                   | 2467                    | 2478                   |
| 13             | 2461                   | 2472                    | 2483                   |
| 14             | 2473                   | 2484                    | 2495                   |

### 802.11 WiFi Channels



WiFi devices must use the same channel in order to communicate with each other. They send and receive on the same channel, so only one device may transmit at any time. This kind of connection is called *half-duplex*.

### Non-overlapping channels: 1, 6, 11



### AP channel re-use



### 802.11 WiFi Channels

| CHANNEL<br>NUMBER | FREQUENCY MHZ | EUROPE<br>(ETSI)    | NORTH AMERICA<br>(FCC) | JAPAN     |
|-------------------|---------------|---------------------|------------------------|-----------|
| 36                | 5180          | Indoors             | ~                      | ~         |
| 40                | 5200          | Indoors             | ~                      | ~         |
| 44                | 5220          | Indoors             | ~                      | ~         |
| 48                | 5240          | Indoors             | ~                      | ~         |
| 52                | 5260          | Indoors / DFS / TPC | DFS                    | DFS / TPC |
| 56                | 5280          | Indoors / DFS / TPC | DFS                    | DFS / TPC |
| 60                | 5300          | Indoors / DFS / TPC | DFS                    | DFS / TPC |
| 64                | 5320          | Indoors / DFS / TPC | DFS                    | DFS / TPC |
| 100               | 5500          | DFS / TPC           | DFS                    | DFS / TPC |
| 104               | 5520          | DFS / TPC           | DFS                    | DFS / TPC |
| 108               | 5540          | DFS / TPC           | DFS                    | DFS / TPC |
| 112               | 5560          | DFS / TPC           | DFS                    | DFS / TPC |
| 116               | 5580          | DFS / TPC           | DFS                    | DFS / TPC |
| 120               | 5600          | DFS / TPC           | No Access              | DFS / TPC |
| 124               | 5620          | DFS / TPC           | No Access              | DFS / TPC |
| 128               | 5640          | DFS / TPC           | No Access              | DFS / TPC |
| 132               | 5660          | DFS / TPC           | DFS                    | DFS / TPC |
| 136               | 5680          | DFS / TPC           | DFS                    | DFS / TPC |
| 140               | 5700          | DFS / TPC           | DFS                    | DFS / TPC |
| 149               | 5745          | SRD                 | ~                      | No Access |
| 153               | 5765          | SRD                 | <u>ب</u>               | No Access |
| 157               | 5785          | SRD                 | ~                      | No Access |
| 161               | 5805          | SRD                 | V                      | No Access |
| 165               | 5825          | SRD                 | ~                      | No Access |

### 802.11 WiFi Channels



### Wireless network topologies

Any complex wireless network can be thought of as a combination of one or more of these types of connections:

### • Point-to-Point

### Point-to-Multipoint

### Multipoint-to-Multipoint

### Point to Point

The simplest connection is the *point-to-point* link.

These links can be used to extend a network over great distances.



### Point to Multipoint

When more than one node communicates with a central point, this is a *point-to-multipoint* network.



### Multipoint to Multipoint

When any node of a network may communicate with any other, this is a *multipoint-to-multipoint* network (also known as an *ad-hoc* or *mesh* network).



### Terminology

- Station: Device that contains IEEE 802.11
  conformant MAC and PHY interface to the wireless medium, but does not provide access to a distribution system. Also called **Client**.
- Access Point (AP) :Device that contains IEEE 802.11 conformant MAC and PHY interface to the wireless medium, and provide access to a distribution system for associated stations. Most often infra-structure products that connect to

### WiFi radio modes in action



# Routing traffic

802.11 WiFi provides a link-local connection. It does *not* provide any routing functionality! Routing is implemented by higher level protocols.

| Т | CP/IP Protocol Stack |  |
|---|----------------------|--|
| 5 | Application          |  |
| 4 | Transport            |  |
| 3 | Internet             |  |
| 2 | Data Link            |  |
| I | Physical             |  |

2

# Bridged networking

For a simple local area wireless network, a bridged architecture is usually adequate.

#### **Advantages**

- •Very simple configuration
- •Roaming works very well

#### Disadvantages

- Increasingly inefficient as nodes are added
- •All broadcast traffic is repeated
- •Virtually unusable on very large wide-area networks



# Routed networking

Large networks are built by applying *routing* between nodes.

- **Static routing** is often used on point-to-point links.
- **Dynamic routing** (such as RIP or OSPF) can be used on larger networks, although they are not designed to work with imperfect wireless links.
- **Mesh routing protocols** work very well with wireless networks, particularly when using radios in ad-hoc mode.

# Routed networking

As the network grows, it becomes necessary to use some sort of routing scheme to maintain traffic efficiency.

#### **Advantages**

 Broadcast domains are limited, making more efficient use of radio bandwidth

Arbitrarily large networks can be made

•A variety of routing protocols and bandwidth management tools are available

3

#### Disadvantages

More complex configuration

Roaming between APs is not supported

### Routed access points



# A link is composed of many parts



# Thank you for your attention

For more details about the topics presented in this lecture, please see the book *Wireless Networking in the Developing World*, available as free download in many languages at:

http://wndw.net/

