

SMTP, POP, and IMAP

Scope

- How Email Appears to Work
- How Email Really Works
- Mail User Agent (MUA)
- Message Format
- Mail Delivery Agent (MDA)/ Mail Transfer Agent (MTA)
- Firewalls, Spam and Virus Filters

How Email Really Works

Mail User Agent (MUA)

- Application the originating sender uses to compose and read email
 - Pine, MH, Elm, mutt, mail, Eudora, Marcel, Mailstrom,
 - Thunderbird, Pegasus, Express, Netscape, Outlook, ...
- You can have multiple MUAs on one system end user choice

Message Format

Envelope

Routing information for the "postman"

Message Header

- Sender
- Recipients (simple, lists, copies, blind copies)
- Other fields of control (date, subject)

Message Body

- Free text
- Structured document (i.e.: MIME)

Message Format

From: Philip Hazel <ph10@cus.cam.ac.uk> To: Julius Caesar <julius@ancient-rome.net> Cc: Mark Anthony <MarkA@cleo.co.uk> Subject: How Internet mail works

Julius,

I'm going to be running a course on ...

- Format was originally defined by RFC 822 in 1982
- Now superseded by RFC 2822
- Message consists of
 - Header lines
 - A blank line
 - Body lines

Message Format

Embedded MUA uses interprocess call to send to MTA Freestanding MUA uses SMTP to send mail Headers added by the MUA before sending

From: Philip Hazel <ph10@cus.cam.ac.uk>

To: Julius Caesar <julius@ancient-rome.net>

cc: Mark Anthony <MarkA@cleo.co.uk>

Subject: How Internet mail works

Date: Fri, 10 May 2002 11:29:24 +0100 (BST) Message-ID: <Pine.SOL.3.96.990117111343.19032A-100000@taurus.cus.cam.ac.uk> MIME-Version: 1.0 Content-Type: TEXT/PLAIN; charset=US-ASCII

Julius,

I'm going to be running a course on ...

Mail Delivery Agent (MDA) / Mail Transfer Agent (MTA)

- MDA/MTA accepts the email, then routes it to local mailboxes or forwards it if it isn't locally addressed
- An email can encounter a network cloud within a large company or ISP, or the largest network cloud in existence: the Internet.

Mail Delivery Agent (MDA) / Mail Transfer Agent (MTA)

Headers added by MTAs

- - -

Received: from taurus.cus.cam.ac.uk ([192.168.34.54] ident=exim) by mauve.csi.cam.ac.uk with **e**smtp (Exim 4.00) id 101qxX-00011X-00; Fri, 10 May 2002 11:50:39 +0100

Received: from ph10 (helo=localhost) by taurus.cus.cam.ac.uk with local-smtp (Exim 4.10) id 101qin-0005PB-00; Fri, 10 May 2002 11:50:25 +0100

From: Philip Hazel <ph10@cus.cam.ac.uk> To: Julius Caesar <julius@ancient-rome.net> cc: Mark Anthony <MarkA@cleo.co.uk>

Message in transit

- A message is transmitted with an *envelope* : MAIL FROM:<ph10@cus.cam.ac.uk> RCPT TO:<julius@ancient-rome.net>
- The envelope is separate from the RFC 2822 message
- Envelope (RFC 2821) fields need not be the same as the header (RFC 2822) fields
- MTAs are (mainly) concerned with envelopes Just like the Post Office...
- Error ("bounce") messages have null senders MAIL FROM:<>/li>

An SMTP Session Example

220 server.bluepipe.net ESMTP Postfix

HELO macbook.catpipe.net

250 server.bluepipe.net

MAIL From: <regnauld@x0.dk>

250 2.1.0 **Ok**

RCPT To: <regnauld@nsrc.org>

250 2.1.5 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

Subject: hello

. 250 2.0.0 Ok: queued as 41A8B4F5C94 QUIT

221 2.0.0 Bye

SMTP: response codes

- 1xx:positive preliminary answer (action to be continued in subsequent command)
- 2xx:positive response indicating that processing has been carried out as requested
- 3xx:positive partial response: the client must give more data for processing to continue
- 4xx:negative answer, processing is refused, but the command can be tried again later
- 5xx:negative answer, processing cannot be carried out

ESMTP

220 server.bluepipe.net ESMTP Postfix

EHLO macbook.catpipe.net

250-server.bluepipe.net

250-PIPELINING

250-SIZE 104857600

250-VRFY

250-ETRN

250-ENHANCEDSTATUSCODES

250-8BITMIME

250-DSN

. . .

250-BINARYMIME

250 CHUNKING

MAIL From: <regnauld@x0.dk>

- Defined in RFC 1869
 - Adds new functionality
 - Transport of 8bit MIME messages
 - Maximum message size limit
 - Function limitation (EXPN, VRFY, ...)
 - Other extensions (pipelining, private extensions)
- The welcome message for ESMTP is EHLO (instead of HELO). In case of a negative answer, the client must revert to the old protocol.

Network Cloud

- large company network or ISP, or the largest network cloud in existence: the Internet.
- may encompass a multitude of mail servers, DNS servers, routers, lions, tigers, bears (wolves!) and other devices and services
- devices may be protected by firewalls, spam filters and malware detection software that may bounce or even delete an email

Email Queue

•The email enters an email queue with other outgoing email messages .

•If there is a high volume of mail in the queue—either because there are many messages or the messages are unusually large, or both —

•the message will be delayed in the queue until the MTA processes the messages ahead of it .

•Transient failures will cause mail to stay in the queue until they are fixed for a configurable period of time:

•Permanent failures will cause the MTA to create a bounce message (from mailer-daemon) that gets sent to the original sender specified in the envelope UNLESS the sender field there is empty (<>)

image from http://computer.howstuffworks.com/e-mail-messaging/email3.htm

MTA to MTA Transfer

- Email clears the queue, enters the Internet network cloud, where it is routed along a host-to-host chain of servers
- The sending MTA handles all aspects of mail delivery until the message has been either accepted or rejected by the receiving MTA
- Each MTA needs to "stop and ask directions" from the DNS in order to identify the next MTA in the delivery chain
- Exact route depends partly on server availability and mostly on which MTA can be found to accept email for the domain specified in the address
- **ABUSE**: Some spammers specify any part of the path, deliberately routing their message through a series of relay servers in an attempt to obscure the true origin of the message.

DNS resolution and transfer process

- To find the recipient's IP address and mailbox, the MTA must drill down through the DNS system, which consists of a set of servers distributed across the Internet beginning with the root nameservers
 - root servers refer requests for a given domain to the root nameservers that handle requests for that tld
 - MTA can bypass this step because it has already knows which domain nameservers handle requests for these .tlds e.g. telecom.ma
 - asks the appropriate DNS server which Mail Exchange (MX) servers have knowledge of the subdomain or local host in the email address
 - DNS server responds with an MX record: a prioritized list of MX servers for this domain
 - To the DNS server, the server that accepts messages is an MX server. When is transferring messages, it is called an MTA.
 - MTA contacts the MX servers on the MX record in order of priority until it finds the designated host for that address domain
 - sending MTA asks if the host accepts messages for the recipient's username at that domain (i.e., username@domain.tld) and transfers the message

Firewalls, spam, and virus filters

- An email encountering a firewall may be tested by spam and virus filters before it is allowed to pass inside the firewall
- filters test to see if the message qualifies as spam or malware
- If the message contains malware, the file is usually quarantined and the sender is notified
- If the message is identified as spam, it will probably be deleted without notifying the sender.

Delivery

- If the message makes it past the filters:
 - The MTA calls a local MDA to deliver the mail to the correct mailbox, where it will sit until it is retrieved by the recipient's MUA

Bibliography: RFCs

- RFC 2821, 2822,
- RFC 1122, 1123: prerequisites for machines connected to the Internet
- RFC 1869: extensions to the SMTP protocol
- RFC 1653: SIZE extension
- RFC 1830: transporting large messages containing binaries
- MIME RFCs...

Exim MTA ENALL