
Deployment

Frank Kuse, AfNOG 2017

1 / 26



About this presentation
Based on previous talks by Joel Jaeggli, Evelyn Namara, NSRC, and Chris Wilson with
thanks!

You can access this presentation at:

Online: http://afnog.github.io/sse/apache/

Local: http://www.ws.afnog.org/afnog2016/sse/apache/index.html

Github: https://github.com/afnog/sse/blob/master/apache/presentation.md

Download PDF:
http://www.ws.afnog.org/afnog2016/sse/apache/presentation.pdf

Acknowledgements:

Cover photo by MarianZubak at en.wikipedia, CC BY 2.5

2 / 26



What is Deployment
Now you have this pretty shiny new thing!

E.g. a web service, mail service, storage service

How do we make it:

Reliable

Scalable

Secure

Efficient (cheap)

Fast

For heavy load (thousands of users?)

3 / 26



What is Deployment
Wrong time to ask!

Needs to have been designed for all this (architecture)

Better hope the designers thought of it!

4 / 26



Design for Deployment
So how do we design something:

Reliable

Scalable

Secure

Efficient (cheap)

Fast

5 / 26



Design for Deployment
Two ways: scale UP (bigger boxes) or scale OUT.

Scale UP is appropriate when:

size is limited (e.g. internal service for <1000 users) and

reliability is not critical (<99% uptime) so you can restore from backups

Otherwise you must scale OUT

6 / 26



Scaling UP
Scaling UP is boring:

More expensive boxes and disks

RAID arrays

Large backups

Slow restores

Hard to move

More complicated when service is layered (e.g. web app + database)

Ultimately limited by how much (data/CPU) you can fit in 1-2 instances

7 / 26



Scaling OUT
Build it out of smaller things (microservices) which are:

Reliable

Secure

Small (cheap)

Efficient (cheap)

Fast

And connect them using an architecture which also is.

Note: the small things do not have to be scalable if your architecture scales!

8 / 26



Organisation
What else is a large system organised out of smaller components?

9 / 26



Organisation
What else is a large system organised out of smaller
components?

WE ARE!

Note the hierarchical structure of complex organisms (see
right)

10 / 26



Characteristics of Life
RED GIRL:

Respiration (energy use)

Excretion (energy use)

Death (plan for unit loss)

Growth (possible but better avoided)

Irritability (responds to events, I/O)

Reproduction (create from saved image)

Locomotion (migration)

11 / 26



Microservices
Need to be/should be easy to:

Maintain

Monitor

Manage

Move

12 / 26



Microservices
Examples of microservices (microservers):

File server

Database server

RADIUS server

LDAP server

HTTP reverse proxy/load balancer/SSL wrapper

Static content HTTP server

PHP/Python/Node.js server

SMTP server

IMAP server/load balancer

DNS server

So how do we make these things? 13 / 26



Microservice outsourcing
Most of these you can buy as a service online:

File server: not exactly, but Amazon S3/OpenStack Swift

Database server: Amazon RDS, OpenStack Trove

Authentication service: Amazon Directory Service (hosted AD), OpenID

HTTP reverse proxy/load balancer/SSL wrapper: CloudFront

Static content HTTP server: CDN (CloudFront etc)

PHP server: most web hosts

Ruby/Python/Node.js server: Engine Yard, Heroku

SMTP server: MailChimp, Mandrill, SendGrid

IMAP server/load balancer: not really

DNS server: Dyn, Amazon Route 53, most web hosts

But if you want to build your own, read on... 14 / 26



Microserver template
Application/daemon

Reliable

Secure

Small (cheap)

Efficient (cheap)

Which application/daemon do we run, and how do we use it to achieve each
of these requirements?

15 / 26



File microserver
Application/daemon: SMB server (Samba) or NFS or cluster FS

Reliable -> replicated to another unit (DRBD or cluster FS)

Secure:

Against all kinds of unauthorised access?

Network encryption

Authenticate against RADIUS/LDAP/Kerberos

Small (cheap) -> 20-100GB size?

Forces us to break up our large storage requirements

Efficient (cheap):

SMB and NFS are both lightweight

Network and disk encryption are costs - do we need them?

16 / 26



SQL database microserver
Application/daemon: MySQL or PostgreSQL

Reliable -> database replication

Secure:

Built-in authentication and authorisation

No external authentication?

Small (cheap) -> 20GB size?

Forces us to break up our large database requirements (AKA sharding)

Design for isolation where possible, e.g. one DB per customer

Per-customer DBs are too small, so combine multiple DBs per server with
migration plan

Efficient (cheap):

SQL database servers are heavyweight!

Only master servers are writable!

Queries are expensive, so run them on read-only slaves

17 / 26



HTTP microserver
Application/daemon: Nginx

Reliable -> stateless

Secure:

Nginx is small (but had many vulnerabilities)

Small (cheap) -> Nginx is lightweight

Efficient (cheap) -> Nginx is lightweight

18 / 26



Routing
How to connect up these services:

How do people access them (front end)

How do they locate/find each other?

How does webserver B know which database/IMAP server to use for this
customer?

19 / 26



Routing This is how we actually build a service out of simple
components (architecture):

Applies at every level: front end->web server, web
server->database/IMAP, IMAP->file server

DNS, load balancer or application logic

What happens if the user's host instance is down?

Need an automated fault detection and failover system!

Probably need to engineer this yourself

Ignore the problem and hard-code it like we always
did before

20 / 26



Routing

DNS

Use the DNS to send clients (users or applications) to an
instance:

Direct: john.provider.com

Just add A records to DNS

Beware: DNS cannot be changed instantly (failover is
slow)

Indirect: login first and redirect to instance

Requires server-side application logic/support

Potential many-to-one: john.provider.com and
steve.provider.com -> same web/DB server

Can be changed transparently to user and without
downtime

Note: migration (planned) is easy, failover (unplanned) is
hard

21 / 26



Routing

DNS

Load balancer

Place a load balancer in front of servers, and direct clients
to it.

Advantages:

Transparent to users

Instant failover (unlike DNS)

You may need a reverse proxy anyway (for SSL, static
content routing)

Typically good routing flexibility (reason for
existence!)

Disadvantages:

Single point of failure

Can interfere with application

HTTP Host header, cookie, redirect rewriting

Application state: need stateful routing?

Another layer adds complexity and latency

22 / 26



Routing

DNS

Load balancer

Application
logic

Application designed (or modified) to choose which
backend to use based on an algorithm.

Lookup which database to use... in the database?

Doesn't work for the user frontend!

Could be based on username:

john -> server j.sql.provider.com

steve -> server s.sql.provider.com

Or first 2 letters, etc.

Using DNS for indirection makes migration easier

In some cases, only app logic is needed, e.g. store files in
Amazon S3 and let Amazon handle load balancing and HA.

23 / 26



Routing, Monitoring and Failover
Nagios monitors your web/DB/IMAP backend servers

Failure detected -> run event handler (Nagios feature)

Handler initiates failover:

Change the DNS

Reconfigure load balancers

Rewrite application config files and restart

Update database -> web application responds

Start a VRRP IP failover/takeover

New master may need reconfiguration (e.g. read-only slave -> read-write
master DB)

Assume fail-hard: consistency check may be required

24 / 26



Routing, Monitoring and Failover

Recovery handling

Recovery detected -> run a different event handler

What should it do?

Fail back immediately?

Reconfigure recovered instance as a slave?

Recovery is often harder than failover!

25 / 26



FIN
Any questions?

(yeah, right!)

26 / 26


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

