Network Scalability and Resilience

Afnog 2001

Many networks look like this...

Problem: Layer 2 networks do not scale

- Volume of broadcast traffic
- Vulnerability to broadcast storms
- Machines can steal IP addresses (accidentally or maliciously)
- Huge MAC tables and ARP tables
- Troubleshooting is hard
 - No "layer 2 traceroute"
- Building resilience is hard
 - Spanning tree is no match for OSPF

Need to separate networks at Layer 3

- Multiple IP subnets
- Separate different classes of machines especially different levels of trust
 - Access networks: for customers to connect to the Internet (leased lines, modems etc)
 - Service networks: machines which we own and manage (mail servers etc)
 - Hosted servers: machines which customers own but locate in our facilities
 - Office network should be firewalled anyway
- Can also gain some resilience
 - e.g. put DNS caches on separate networks

Solution 1

- Pro:
 - Simple to build
 - Resilience is the vendor's problem
- Cons
 - Expensive
 - Wasteful either buy a bigger/faster router than you need now, or throw away and upgrade
 - Selection of line cards may be limited
 - No router is resilient against software bugs and reloads

Solution 2

Solution 2

- Maintain investment in existing equipment and add to it as required
 Mix interface types and/or vendors
 Upgrading is less intrusive
 Careful design can give a high level of resilience