
Introduction to FreeBSD

AfNOG Workshop 2004

May 16, 2004

Hervey Allen and Phil Regnauld

Welcome

� Introduction

� Instructors:
Hervey Allen (English)
Phil Regnauld (French)

� Level of this session

� How the class runs

� What we'll do today

� Helpers:
T1 Instructor Staff

Note: this presentation is given in conjunction with exercises to reinforce the topics
presented.

Outline

� Why FreeBSD.

� Why UNIX.

� FreeBSD 5.2.1 installation.

� FreeBSD disk paritioning.

� FreeBSD directory structure.

� System commands (cp, ls, cd, rm, etc.), and more commands.

� Create and remove user accounts.

� Discuss /etc/passwd, /etc/group, /etc/master.passwd.

� Basic editor usage with vi.

� Use of 'su' command for 'root', and /etc/sudoers.

� Use of the FreeBSD package facility (pkg_add).

� Installing software from ports.

Outline continued

� Finding information about your system.

� Mounting filesystems.

� File permissions. Review commands “chmod” and “chown”.

� “ifconfig” to configure network cards and interfaces.

� The /etc/hosts file.

� Commands, programs, shells and paths.

� Install a package using /usr/ports.

� Learn how to shutdown and restart the server. Discuss
initialization levels.

� Discuss FreeBSD services and how to know what's running.

� /etc/crontab and crontab format.

� The FreeBSD kernel and how to recompile it.

Outline continued

� Hardware support and kernel modules.

� We mention firewalls (ipfw).

� Other installation methods:
- From source
- Binary

� Gnome vs. KDE and Xwindows. What are they. Why they are not
necessary for a server?

� Logs and where they exist. We'll inspect logs, noting
/etc/syslog.conf.

� Summary.

� More resources.

Why FreeBSD?
(This is our conclusion as well...)

� FreeBSD is built in a modular manner.

� Access to source code.

� Aimed at stability not user desktops.

� Industrial strength TCP/IP stack.

� Very, very good track record for stability and
security.

� Scales to very large sizes for services.

� Superior file system.

� Superior password store (hashed db for passwords).

� Has a very rich collection of available software.

Why UNIX?

Note that FreeBSD and “UNIX” are very
similar systems. That is, if you use Solaris,
any other “BSD”, etc. then understanding
FreeBSD is of a great help.

It's important to understand this idea:

Linux != UNIX
Linux and UNIX look very similar, but

underlying design is different. Still, if you
know Linux or UNIX well, then using the
other should be conceptually easy.

Why UNIX cont.?

Along with the strengths of FreeBSD, when
you use UNIX you get (in general):

� Basic services scale to huge numbers.

� Incredibly stable (crashing is unusual).

� Security model is modular and relatively easy to
implement.

� Extremely few memory leaks in core services.

� Very mature multi-processor and multi-process
subsystems at the kernel level.

� Does not require a GUI to provide services.

� Extremely interoperable as standards are followed.

Installing FreeBSD (5.2.1)

� How can you install? (FreeBSD Handbook section 2.2.6)

� A CDROM or DVD

� A DOS partition on the same computer

� A SCSI or QIC tape

� Floppy disks

� An FTP site, going through a firewall, or using an
HTTP proxy, as necessary

� An NFS server

� A dedicated parallel or serial connection

FreeBSD disk organization

If you wish to understand how FreeBSD
organizes and views disks then read section
3.5 of the FreeBSD handbook for an
excellent and succinct description.

If you come to disk partitioning from a
Windows perspective you will find that
UNIX (FreeBSD, Linux, Solaris, etc.)
partitions data very effectively and easily.

In FreeBSD a “slice” is what you may
consider to a “partition” under Windows.

FreeBSD partition schemes

Partition Use

a Root partition (/)

b swap partition

c Not used for filesystems.

d Supposedly not often used.

e/f /tmp, /usr, etc...

View information using “df - h” and
“swapi nf o”

FreeBSD disk slices

Sample Output to view disk slices from
“f di sk - s”

/ dev/ ad0: 77520 cyl 16 hd 63 sec

Par t St ar t Si ze Type Fl ags

 1: 63 8385867 0x0b 0x80

 2: 8385930 8385930 0xa5 0x00

 3: 16771860 208845 0x83 0x00

 4: 16980705 61159455 0x0f 0x00

This is a 40GB disk with 3 operating systems spread
across four slices. The operating systems include
Windows 2000 (1), FreeBSD (2), Linux (3) and the 4th
partition is a DOS swap slice for Windows 2000.

FreeBSD partitions in a slice
You can see more detailed information about

your disk slices by just typing “f di sk”

To see the partitions in a FreeBSD slice use
“df - h”:

Fi l esyst em Si ze Used Avai l Capaci t y Mount ed on
/ dev/ ad0s2a 248M 194M 34M 85% /
devf s 1. 0K 1. 0K 0B 100% / dev
/ dev/ ad0s2e 248M 18K 228M 0% / t mp
/ dev/ ad0s2f 2. 4G 2. 0G 278M 88% / usr
/ dev/ ad0s2d 248M 16M 212M 7% / var

And use “swapi nf o” to see the swap partition:
Devi ce 1K- bl ocks Used Avai l Capaci t y
/ dev/ ad0s2b 760616 0 760616 0%

FreeBSD directory structure

Repeat after me:
“The command 'man hi er ' is your friend.”

So, why is your FreeBSD disk partition split in
 to “slices”? Largely to separate important
file systems from each other. These
filesystems are usually represented by
specific directories.

Why not just run with everything in one
place? That is, everything under root (/).

FreeBSD directory structure cont.

Advantages of a single filesystem:

� Easier to resize if you want to make it larger.

� Easier conceptually for some people.
Advantages of multiple filesystems:

� If one system fails other systems can still work:

� User fills up disk with runaway program.

� Power failure only damages one file system.

� FreeBSD can optimize layout of files based on
the use for the filesystem.

� Logical separation of functionality, thus
improving security. I.E. root can be read only.

Basic Commands

� cp, cd*, ls, mkdir, mv, rm y man

� (*built in command shell commands).

� Where are commands located?

� /bin, /usr/bin, /usr/local/bin, /sbin, /usr/sbin

� The difference between “sbin”, “bin” and “ /usr”

� If you know DOS:

� cp = copy

� cd/chdir = cd/chdir

� ls = dir

� mkdir = mkdir

� mv = move (before it was copy and delete/erase)

� rm = del[ete] and/or erase

Basic commands continued

Not a command, but we'll practice starting a
detached process.

To do this you use the “&” symbol after the
command you wish to run that opens a
separate window.

For example, to open another terminal from
within your terminal under XWindows
(using KDE) you would type:

konsole & (/usr/local/bin)

or for an old-style xterm:
xterm & (/usr/X11R6/bin)

More commands
ps ProceSs list. Show information for running processes

cat ConCATenate a file to the default ouput (screen)

less Display file pausing each page & allowing movement

more Display file pausing each page, but no movement

tail Display the end of a file (see “-f” option)

gzip Compress file(s) using Lempel-Ziv coding

gunzip Decompress zip'ped files

bunzip2 Uncompress files compressed with bzip2

tar Manipulate Tape ARchive files.

grep Search text/files for patterns (many variations)

Even more commands

� apropos

� bg

� bzip2

� chgrp*

� chmod

� clear

� chown*

� “ctrl-u”

� date

� exec

� df

� dmesg

� du

� export

� find

� sysinstall

� sysctl
� swapinfo

� tcpdump

� top

� touch

� traceroute

� uname

� unset

� unzip

� users

� watch

� whereis

� which

� whoami
� gcc

� hexdump

� history

� id

� ifconfig*

� info

� init*

� kill

� ln

� locate

� lsof**

� mkdir

� “|” pipe

� man

� mkisofs

� mount*

� netstat

� nmap**

� ping

� pkg_add

� pkg_delete

� pkg_info

� printenv
� ps

� pwd

� reset

� route*

� rmdir

� set

� su

*root only for changes **Not installed by default in FreeBSD

Create, remove, update user accounts

(FreeBSD Handbook section 8.6)

� chsh, chgrp, chpass, passwd, pw

� /etc/passwd, /etc/group, /etc/master.passwd,
/etc/sudoers (note vipw)

� /usr/sbin/adduser

� /usr/sbin/rmuser

� /usr/share/skel

� /etc/profile

� /var/mail

� Note: /usr/compat/linux

/etc/passwd

The /etc/password file has the following
format:

her vey: x: 500: 500: Her vey Al l en: / home/ her vey: / usr / l ocal / bi n/ bash

i.e.:
user : pw: UI D: GI D: name: di r ect or y: shel l

Using /etc/master.passwd the “pw” is
represented by an “x”. If the user entry is
actually something like a service, then the
“shell” is represented with “/sbin/nologin”.

/etc/master.passwd

This file is used to hide encoded user
passwords. Only root can (or should) read
this file. /etc/pwd.db is password database
and is used by most applications.

/etc/master.passwd has the following format:
her vey: 1qvAgYWGD$nLf / LpT1r 0XXXXXXj MC/ : 1001: 1001: : 0: 0: Her vey

Al l en: / home/ her vey: / usr / l ocal / bi n/ bash

i.e.:

� User's login name.

� Users encoded password. If starts with “1” it's md5 encyrpted.

� User's ID number.

� User's login group ID.

� User's classification (unused).

/etc/master.passwd continued

her vey: 1qvAgYWGD$nLf / LpT1r 0XXXXXXj MC/ : 1001: 1001: : 0: 0: Her vey
Al l en: / home/ her vey: / usr / l ocal / bi n/ bash

� Password change time. (0 means never)

� When the account expires (0 means never)

� General user information (like full name...)

� User's home directory.

� User's login shell.

/etc/group

Format is:
wheel : * : 0: r oot , her vey, t est

� Group name. 8 characters or less.

� Encrypted password. Rarely used. “*” as placeholder.

� Group Identifying number (GID).

� List of group members seperated by commas.

� User's login shell.

The vi editor

� Why use vi? Why not emacs, xemacs, joe,
pico, ee, etc.? (Ask me about “pico -w”)

� vi exists in almost all flavors of Unix and
Linux.

� If you have to work on a new machine, then
vi will almost always be available to you.

� In reality, you are likely to use a different
editor for more complex editing, but let's
see what we can do with vi -->

Basic vi commands

Impress your friends...

� Open: vi fn, vi -r fn, vi + fn, vi +n fn, vi +/pat fn

� Close: :w, w!:, :wq, :wq!, :q, :q!

� Movement: h,j,k,l w, W, b, B, :n (+arrow keys)

� Edit: A, i, o, x, D, dd, yy, p

� Search: /pattern, ?pattern, n, N

Commands - programs – shell – path

What's a “command” and a “program”?
Why can't you always run all commands and

programs on a system?
How do you “fix” this?
How do you see how things are configured

for a user?

� /usr/share/skel

� /etc/profile

� /home/user/.bashrc

� /home/user/.bash_profile

� set, printenv, export

Using the su command

The “su” command is used to become a different
userid, like root, without having to logout and log
back in.

To use “su” to become root your userid has to be
given permission to do this in “/etc/sudoers”.

You can allow users to run specific privileged
commands using “/etc/sudoers” and “sudo”.

You can assign users to the “wheel” group and using
“/etc/sudoers” you can allow them to run all
commands (or some, but unusual).

More uses for the su command

Instead of having to open a root shell, you
can run a privileged command like this:

sudo command

For example:

sudo mount / mnt / cdr om

And, if you wish to open a different user shell
and run their login scripts do:

su – user i d

Configuring network interfaces

During boot if network device is recognized
by static kernel module, then appropriate
code is used.

After boot, using “ifconfig” you can see that
device exists. Look for MAC address.

Initial configuration of specific device can be
done with ifconfig, or try “dhcl i ent dev”

If device works, edit /etc/rc.conf and put in
device specific entries for each boot.

Configuring network interfaces cont.

Example lines in /etc/rc.conf for network
device:

host name=” l ocal host . l ocal domai n”

i f conf i g_wi 0=” DHCP”

Set the hostname and indicate that network
device wi0 will use DHCP to get network
information. FreeBSD uses device names
for each network device. “wi0” indicates the
first “Wireless” card.

/etc/hosts

In this file you should have, at least, this line:
127. 0. 0. 1 l ocal host l ocal host . l ocal domai n

For a private network you could use this file
instead of using a DNS server. FreeBSD per
default looks in /etc/hosts before asking DNS
to resolve an IP address, or you can change
this order using /etc/nsswitch.conf.

We'll add an entry in /etc/hosts for our
network operations center server, or “noc”.

Shutdown and restart a server

How do you shutdown a FreeBSD box?

� shutdown 1 message

� halt

� init 0

And, to restart?

� reboot

� shutdown -r now

� init 6

Run levels

And, what was “init 0”?
FreeBSD has the concept of run levels (but

different from Linux).
 Run- l evel Si gnal Act i on

 0 SI GUSR2 Hal t and t ur n t he power of f

 1 SI GTERM Go t o si ngl e- user mode

 6 SI GI NT Reboot t he machi ne

 c SI GTSTP Bl ock f ur t her l ogi ns

 q SI GHUP Rescan t he t t ys(5) f i l e

So, in reality, you either run in single-user
mode with “everything off” or your system is
up and fulling running in multi-user mode.

Run levels cont.

Multi-user mode:

� Startup configuration settings in /etc/defaults/rc.conf
are executed (scripts in /etc/rc.d correspond).

� Local overrides and system-specific settings go in
/etc/rc.conf (/etc/rc.local is deprecated).

� Filesystems are mounted as described in /etc/fstab.

� Network services and system daemons (see “rc.conf”)
are started.

� System services are now in /etc/rc.d and can be
started/stopped directly. Add service with:

ser v i ced_enabl e=” YES”
in /etc/rc.conf. Do this before starting the service.

� Services with startup scripts installed by third party
packages are located in /usr/local/etc/rc.d are run.

Running services and ports

� To view all services:

� ps - aux | mor e

� What tcp ports are they using?

� sudo / usr / l ocal / sbi n/ l sof - i

� / usr / bi n/ net st at - an - f i net

� sockst at - 4

� What starts at boot time? See in /etc/rc.d,
/usr/local/etc/rc.d/ along with /etc/rc.conf

� Don' t f or get / et c/ i net d. conf

The “pkg” commands

In general the pkg_add and pkg_delete
facilities allow you to install and remove
software on your system in an efficient and
consistent manner.

The pkg_info command allows you to see
what's installed, quickly, and to get detailed
information about each software package
that is installed.

Package installation using pkg_add

� In FreeBSD you can install by compiling from source,
compiling from ports, and by using pkg_add.

� You can get “packages” from local source (a CD), off
FreeBSD sites, or your local network.

� If you have a network connection and know the
package name you can, literally, just type:

pkg_add - r package_name

� Set alternate package sites setting PACKAGEROOT,
and PACKAGESITE variables, or specify the site
explicitly like this:

pkg_add f t p: / / l ocal s i t e/ di r / package_name

Using pkg_info

You can do quite a few things with the “pkg”
tool. The most common uses are generally
to use pkg_add, pkg_info, and pkg_delete.

Find out if something is already installed:
pkg_i nf o (l i st al l i nst al l ed packages)

pkg_i nf o | gr ep moz (f i nd al l packages
 cont ai ni ng “ moz”)

Get more information about an already
installed package:

pkg_i nf o exec_package_name

Using pkg_delete

If you have a package you wish to remove you
can simply type:
pkg_del et e package_name

But, if you want to remove the package and all
its dependent packages you would do:

 pkg_del et e - r package_name

But, be careful about doing this. You might
want to check what will happen first by
doing:
pkg_del et e - n package_name

Installing from Ports

First you must have installed the /usr/ports collection
during system installation. Otherwise, use
/stand/sysinstall after installation and then choose
Configure, Distributions, then Ports.

Once the “ports collection” is installed you can see
the entire tree under /usr/ports. There are several
thousand software packages available.

This collection contains minimal information so that
you can “make” a software package quickly, and
easily from a separate CD-ROM or network site
containing the port source.

See section section 4.5 of the FreeBSD Handbook.

Installing from ports cont.

To see if a software package exists as a port:
cd / usr / por t s
make sear ch name=package
make sear ch key=keywor d

Let's do this for “lsof” (LiSt Open Files):
cd / usr / por t s
make sear ch name=l sof (or “ wher ei s l sof ”)

And the output from this is:
Por t : l sof - 4. 69. 1
Pat h: / us r / por t s / sysut i l s / l sof
I nf o: Li s t s i nf or mat i on about open f i l es (s i mi l ar t o f s t at (1))
Mai nt : obr i en@Fr eeBSD. or g
I ndex: sysut i l s
B- deps:
R- deps

Installing from ports cont.

From the previous page you'll note that the
port is in /usr/ports/sysutils/lsof.

If you have a network connection...

You can simply type “make i nst al l ”

But, you might want to do:

� make

� make i nst al l

Installing from ports cont.

You can install from cdrom. If you have a cdrom with
the full ports distfiles, then simply mount it. Then
you would do:

� cd / usr / por t s/ sysut i l s/ l sof

� make

� make i nst al l

And the port will find the distfile on /cdrom instead
of from the internet.

Finally, to fetch from a local server you can force fetch
to do this in various ways. For example:

� expor t MASTER_SI TE_OVERRI DE=” f t p: / / l ocal . si t e/ di st f i l es/
f et ch”

Looking for more information

Not only can you use commands to find information
about your system, but you can look inside several
files, and you can use the sysctl facility as well.

Example of files with useful information:

� /etc/motd

� /etc/resolve.conf

� /etc/services

� /etc/X11/XF86Config

� /etc/fstab

More information cont.

If you are used to “/proc” it's possible to compile
support for this in to the kernel, but not normally
used (“options LINPROCFS” in kernel conf file).

You can look in /boot/kernel for modules available
and use “kldstat” to see what's loaded (kernel
loadable modules = “kld”).

Use “dmesg” to see what is reported during startup,
including hardware and addresses.

Use of sysctl, such as:
sysct l - a,
sysct l - aN
sysct l ker n. maxpr oc

And, see /etc/sysctl.conf

Logs – how to know what's up

� To configure what happens to events that are
logged by applications using syslog, edit the file
/etc/syslog.conf.

� Take a look at the file /var/log/messages. The
“t ai l ” command is very useful for this.

� To troubleshoot start by typing:

 t ai l - f / var / l og/ messages

and in another terminal start and stop the service
you are trying to debug.

Logs cont.

There are many log files. For example, if you run a
webserver, like apache, all of the webserver logs are
likely to be in /var/log/httpd

sendmail uses /var/log/maillog

There are multiple software packages to read and
automatically generate reports based on logfiles.
See:

� http://nsrc.org/security/index.html#logging

to see some examples of available packages (in
Linux).

Mounting filesystems

� If you want to mount a filesystem not listed in
/etc/fstab then you need to use the mount
command.

� First, you need to know what entry in the /dev
directory describes the device you wish to mount (a
cd, floppy, another hard drive, etc.).

� You, also, need to know what type of filesystem.

� For example, mounting a dos formatted floppy:

� mount - t msdos / dev/ f d0 / mnt / f l oppy

Or

� mount _msdosf s / dev/ f d0 / mnt / f l oppy

File permissions

� There are five categories and three types of
permissions that you need to consider.

� The default file permissions are set with the umask
command.

� There are two categories of permissions that relate
to the user or group that is going to run a file
(setuid, setgid).

� The permissions available are “r” (read), “w”
(write), and “x” (execute).

� You can assign permissions to world (a), group (g),
and user (u).

File permissions cont.

� A file belongs to a user. You can assign a file to
another user or another group using the chown
(“CHange OWNer”) command.

� You can change permissions and/or owners for a
group of files or for all files and all files in
subdirectories using the chmod and chown
commands.

� Finally, you can change directory permissions
using the chmod command.

Crontab

� The “cron” service allows you to
automatically run programs when you
want.

� This is configured in /etc/crontab, and
/var/cron/tabs/

� Use the command cr ont ab in order to
change the files that control how the cron
daemon works.

Crontab cont.

� In addition you can specify who may and
may not use cronjobs with /var/cron/allow
and /var/cron/deny

A cron file that shows how a service is going
to run has the following format:

Mi nut e Hour Day Mont h Weekday Command

An example:
1 4 1 4 * / bi n/ mai l user @dot . com < / home/ user / j oke

Send an email on the first of April.

Additional Topics

� Recompiling the FreeBSD kernel

� Kernel loadable modules and hardware support

� Firewalls

� Other software install methods

� From source

� From binary

� X Window vs. Gnome vs. KDE

� Summary

� More resources

The FreeBSD kernel

� You might rebuild a kernel to add hardware
support, additional filesystem support, etc.

� Kernel source, if installed, is in /usr/src/sys

� “If there is not a /usr/src/sys directory on your system,
then the kernel source has not been installed. The
easiest way to do this is by running /stand/sysinstall as
root, choosing Configure, then Distributions, then src,
then sys.” (FreeBSD Handbook 9.3)

� To rebuild your kernel you use the default
configuration file, update settings as
needed, then recompile the kernel,
installing it in /boot.

Recompiling the FreeBSD kernel

See FreeBSD Handbook section 9.3

� Config file in / usr / sr c/ sys / ar ch/ conf

� Example (old style):

� cp GENERI C / r oot / ker nel / MYNEWKERNEL

� l n - s / r oot / ker nel / MYNEWKERNEL

� / usr / sbi n/ conf i g MYNEWKERNEL

� cd . . / compi l e/ MYNEWKERNEL

� make depend, make, make i nst al l

Recompiling the FreeBSD kernel cont.

Example (new style):

� cd / usr / sr c

� make bui l dker nel ker nconf =MYNEWKERNEL

� make i nst al l ker nel ker nconf =MYNEWKERNEL

� Kernel installed as /boot/kernel

� Old kernel is in /boot/kernel.old

� If new kernel does not boot, go to boot
loader prompt and type:

� unl oad

� boot ker nel . ol d

Recompiling the FreeBSD kernel cont.

The kernel config file has many options. For a
more complete explanation of the various
options see (e.g. on a PC with Intel CPU):

� /usr/src/sys/i386/conf/NOTES

Or look at the FreeBSD Handbook section 9.4
for some more examples.

Kernel and hardware support

FreeBSD is moving towards “modularizing”
hardware support. That is “drivers” (kernel
loadable modules) are loaded at boot time
to support your systems' hardware.

Some hardware is still supported by statically
loaded software directly in the kernel.

Some hardware use is optimized by setting
kernel state using the sysctl facility.

Kernel loadable & static modules

� Static (in conf) – built-in during recompile
vs.

� Kernel loadable (kld) /boot/kernel
modules.

� Autoloading using /etc/rc.conf directives
and/or using loader.conf

� Address security in FreeBSD vs. Linux and
modules.

� Commands kl dl oad, kl dst at , k l dunl oad

Firewalls

Building an appropriate firewall ruleset for
your situation requires thought:

� See FreeBSD Handbook section 10.8 to get started.

� Enable IP FireWall support (IPFW) by adding one, or
more options to kernel configuration file.

� ipfw was updated to “ipfw2” in July 2002.

� Starting and stopping in /etc/rc.conf and
/etc/rc.firewall.

� ipfw rules and firewall set are in /etc/rc.firewall.

� You can dynamically control ipfw as well:

� i pf w f l ush, i pf w enabl e, i pf w di sabl e,
i pf w f l ush, et c.

Other Software Install Methods

There are three other methods to install
software on your FreeBSD system. These are:

1.) The ports collection (/usr/ports)
2.) Installing from source (gcc make)
3.) Installing a binary file (already made)
You are most likely to install from packages,

then ports, then from source, and then
already made binary applications (e.g. java).

Note that installing from source has its
advantages (customization and destination)

Installing from source

It's likely you'll want to install software that's
either not available as a package or port, or
that you need to change or reconfigure
before installation.

In such cases, you need to compile the
software from source code.

It's very typical that software comes as a
single “tar” archive that is compressed
(tar.gz or .tgz)

An example of how to install from source -->

Installing from source cont.

� Download a file fn.tar.gz to /usr/src.

� tar -xvzf /usr/src/fn.tar.gz

� cd /usr/src/fn-version

� ./configure

� make

� make install

This is if everything works, but now you don't
have any good way to uninstall the
software...

Installing a binary file

This is much less common, but you can precompile a
program for a specific version of FreeBSD.

Clearly this would be something that might be done
with commercial applications that have restrictive
licensing agreements.

Normally installation is done using a shell script that
copies compressed files to the appropriate
locations and updates configurations as needed.

Adobe's Acrobat Reader, Macromedia Flash plugin,
etc. are examples (/usr/local/bin/acroread).

X Window – Gnome – KDE

The first thing to understand is that Gnome
and KDE use the X graphical subsystem.
Generally KDE programs run in Gnome and
vice-versa.

For a server you do not need to run, or install,
any of these.

You can run one, both, or other window
managers like fwvm, windowmaker, etc.

X – Gnome – KDE cont.

� Which desktop environment is better? There's no
correct answer to this.

� To configure how X runs you specify this in the
file /etc/X11/XF86Config.

� You can configure everything using menu-based
tools, but if you understand how things work you
can use edit /etc/X11/XF86Config directly. (xf86cfg
may be required in FreeBSD).

� To exit X you can press ALT-CTRL-Backspace.

� You can, also, go directly to a terminal using alt-
ctrl-f2 through f8. alt-ctrl-f9 returns to X. Alt-ctrl-f1
displays X informational messages.

Summary

� FreeBSD is built in a modular manner.

� Access to source code.

� Aimed at stability not user desktops.

� Industrial strength TCP/IP stack.

� Very, very good track record for stability and
security.

� Scales to very large sizes for services.

� Well proven and tested file system.

� Superior password store (hashed db for passwords).

� Has a very rich collection of available software.

More resources

� http://www.google.com/

� http://www.freebsd.org/

� http://www.freebsd.org/support.html

� O'Reilly books (http://www.oreilly.com/)

� http://www.sourceforge.net/

� The AfNOG mailing list (afnog@afnog.org)

Hervey Allen via nsrc@nsrc.org

