
Courier worksheet

1 of 5

Courier worksheet
1. Install courier-authlib
2. Configure and start courier-authlib
3. Test courier-authlib
4. Install courier-imap
5. Configure and start courier-imap
6. Test POP3 and IMAP
7. POP3 and IMAP over SSL
8. Install sqwebmail
9. Configure and start sqwebmail
10. Test sqwebmail
11. Optional extra exercises

Exim does not include any software for retrieving mail from a mailbox, so we need to install additional software.
Courier is a mail system which includes a number of components. In fact it has its own MTA, but we will ignore this (it
is still under heavy development, and in my opinion does not have the flexibility needed for an ISP environment). The
components we are interested in are the IMAP/POP3 servers and ’sqwebmail’, the webmail server.

You can get the entire courier system as one package (including the MTA), or just the components. We will get the
pop3/imap and webmail components separately.

As with most software packages under FreeBSD, you have a choice of installing directly from source, or using the ports
system. If you install from source you have the most control over which version is installed and which compilation
options are used. However installing from packages is easier, gives you a record of which files where installed where,
and installs the files in the "normal" places you’d expect for a FreeBSD system. In particular, the commands get
installed in /usr/local/bin and /usr/local/sbin, which is already in your $PATH.

1. Install courier-authlib

The courier packages now share a single authentication library, courier-authlib. This package is responsible for
looking up usernames and passwords - it can retrieve this information from various locations, including Unix system
accounts (authpam), SQL databases (authmysql and authpgsql), LDAP databases (authldap), and local file databases
(authuserdb). Having a separate package means that the same authentication configuration can now be shared by both
POP3/IMAP and Webmail.

Start by looking at the port’s Makefile:

cd /usr/ports/mail/courier-authlib
less Makefile

Scan through the Makefile to see the various WITH_XXX options you can select at compilation time. For example, if
you want to be able to authenticate against a Mysql database, you can do "make WITH_MYSQL=yes". However, there
are only two modules we need - PAM and USERDB - and these are both installed by default. So continue as follows:

make
[If you are prompted for a set of options, hit tab to OK to accept the
defaults: namely "PAM support", "authuserdb", and "merge new options"]
make install
make clean (optional step - deletes temporary files in ’work’ subdir)

2. Configure and start courier-authlib

courier-authlib runs a pool of authentication daemons which perform the actual work; courier-imap and sqwebmail
communicate with these daemons via a socket. So the next thing we need to do is to start the daemons. First you need to
edit /etc/rc.conf:

vi /etc/rc.conf
add the following line:
courier_authdaemond_enable="YES"

Courier-authlib itself has a single configuration file, /usr/local/etc/authlib/authdaemonrc. For the purposes of this
exercise, we will turn on authentication debugging.

cd /usr/local/etc/authlib
vi authdaemonrc
change this line:
DEBUG_LOGIN=0
to:
DEBUG_LOGIN=1

Courier worksheet

2 of 5

To save resources, you can also configure the authdaemond process not to try any authentication mechanisms which
you know you don’t need. For example, if all your authentication is only via PAM for Unix system passwords, then you
can remove all the others:

...
authmodulelist="authpam"
...

Now we are ready to start the authentication daemons:

/usr/local/etc/rc.d/courier-authdaemond.sh start
Starting courier_authdaemond.
ps auxwww | grep authdaemond
root 36787 0.0 0.2 1220 720 p1 S 10:40AM 0:00.00 /usr/local/sbin/courierlogger
-pid=/usr/local/var/spool/authdaemon/pid -start /usr/local/libexec/courier-authlib/authdaemond
root 36788 0.0 0.2 1464 880 p1 S 10:40AM 0:00.00 /usr/local/libexec/courier-authlib/authdaemond
root 36789 0.0 0.2 1464 880 p1 S 10:40AM 0:00.00 /usr/local/libexec/courier-authlib/authdaemond
root 36790 0.0 0.2 1464 880 p1 S 10:40AM 0:00.00 /usr/local/libexec/courier-authlib/authdaemond
root 36791 0.0 0.2 1464 880 p1 S 10:40AM 0:00.00 /usr/local/libexec/courier-authlib/authdaemond
root 36792 0.0 0.2 1464 880 p1 S 10:40AM 0:00.00 /usr/local/libexec/courier-authlib/authdaemond
root 36793 0.0 0.2 1464 880 p1 S 10:40AM 0:00.00 /usr/local/libexec/courier-authlib/authdaemond

ps shows one courierlogger process, and six authdaemond processes (one master, five workers). If you didn’t see
"Starting courier_authdaemond" then check your work, especially courier_authdaemond_enable="YES" in /etc/rc.conf

3. Test courier-authlib

You can test the authentication system by itself; the "authtest" command sends requests down the authentication socket,
and displays the responses which come back. Test using any Unix login account which already exists on your system.

authtest brian -- find an account called ’brian’
authtest brian foo -- check ’brian’ has password ’foo’
authenumerate -- list all accounts

Try it also with a non-existent username, and with both the right password and a wrong password for an account, to
confirm that passwords are being validated properly.

Because we enabled login debugging, you should find that each authentication request generates detailled information
in /var/log/debug.log showing how the request is passed to each module in turn. Have a look in this file to confirm:

less /var/log/debug.log

Further documentation for courier-authlib can be found on the web at http://www.courier-mta.org/authlib/, and is also
installed in /usr/local/share/doc/courier-authlib/

4. Install courier-imap

Using ports, building courier-imap is straightforward:

cd /usr/ports/mail/courier-imap
[Accept default configuration: with OpenSSL and IPv6]
make
make install
make clean (optional step)

5. Configure and start courier-imap

You can choose to run POP3, IMAP, or both. There is a configuration file for each one:

/usr/local/etc/courier-imap/pop3d
/usr/local/etc/courier-imap/imapd

The default configuration is acceptable in most cases. However for a large server you may wish to increase the
maximum number of concurrent connections from the default of 40, if you have fairly powerful hardware:

cd /usr/local/etc/courier-imap
vi pop3d
...
MAXDAEMONS=300
...
vi imapd
...
MAXDAEMONS=300
...

Then, you need to enable the daemon(s) which you wish to run in /etc/rc.conf

Courier worksheet

3 of 5

vi /etc/rc.conf
add the following line(s):
courier_imap_pop3d_enable="YES"
courier_imap_imapd_enable="YES"

And then run the startup script(s):

/usr/local/etc/rc.d/courier-imap-pop3d.sh start
Starting courier_imap_pop3d.
/usr/local/etc/rc.d/courier-imap-imapd.sh start
Starting courier_imap_imapd.

6. Test POP3 and IMAP

Test using telnet: POP3 and IMAP are both text-based layer 7 protocols and you can drive them by hand.

telnet localhost 110
Connected to localhost.
Escape character is ’^]’.
+OK Hello there.
user username
+OK Password required.
pass password
+OK logged in.
stat
+OK 26 49857
retr 1
+OK 1073 octets follow.
... message
.
quit
+OK Bye-bye.
Connection closed by foreign host.

telnet localhost 143
Connected to localhost.
Escape character is ’^]’.
* OK Courier-IMAP ready. Copyright 1998-2001 Double Precision, Inc. See
COPYING for distribution information.
1 login username password
1 OK LOGIN Ok.
2 examine inbox
* FLAGS (\Answered \Flagged \Deleted \Seen \Recent)
* OK [PERMANENTFLAGS ()] No permanent flags permitted
* 26 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 989061119] Ok
2 OK [READ-ONLY] Ok
3 logout
* BYE Courier-IMAP server shutting down
3 OK LOGOUT completed
Connection closed by foreign host.

NOTE: The daemons will fail to login if the mail directory does not exist, although current versions do now provide an
error message. Hence you need to have delivered at least one message to the user, to create their mailbox, before they
can login (or use the ’maildirmake’ command to create it). Look for logging messages in /var/log/maillog and
/var/log/debug.log.

7. pop3 and imap over SSL

If you wish, you can choose to allow pop3 over SSL (port 995) and imap over SSL (port 993). The advantage is that,
for clients which support it, the traffic is encrypted. The disadvantage is higher CPU load on your server for the
encryption of data.

To run SSL you will need a certificate. For testing purposes you can use a ’self-signed’ certificate. The following
commands will generate certificates for both pop3 and imap services:

cd /usr/local/etc/courier-imap
cp pop3d.cnf.dist pop3d.cnf
cp imapd.cnf.dist imapd.cnf
mkpop3dcert
mkimapdcert

Next, enable the SSL daemons in /etc/rc.conf:

vi /etc/rc.conf
courier_imap_pop3d_ssl_enable="YES" # pop3 over ssl, port 995
courier_imap_imapd_ssl_enable="YES" # imap over ssl, port 993

Then you start the servers:

/usr/local/etc/rc.d/courier-imap-pop3d-ssl.sh start

Courier worksheet

4 of 5

Starting courier_imap_pop3d_ssl.
/usr/local/etc/rc.d/courier-imap-imapd-ssl.sh start
Starting courier_imap_imapd_ssl.

You can’t use a regular telnet to test it, because all your communication needs to be encrypted, but openssl has an SSL
client you can use to make an encrypted connection for testing:

openssl s_client -connect localhost:995

If you were running the service commercially you would be better to get a proper certificate signed by a recognised CA,
rather than using a self-signed certificate.

8. Install sqwebmail

webmail is a very useful service to offer your clients - although you may need to be careful of the extra CPU load and
bandwidth it might use.

Unlike many other webmail solutions, which use POP3 or IMAP to talk to the mail store, sqwebmail reads and writes
Maildir directories directly. This makes it efficient in the case where POP/IMAP and webmail run on the same box, or
where there is an NFS-shared mailstore.

sqwebmail is feature-rich, very customisable through HTML templates and stylesheets, supports multiple languages,
and is simple to install (it runs as a single CGI). Note however that it is still under very active development and hence
subject to change quite frequently.

If you don’t have it, install and test Apache first:

cd /usr/ports/www/apache13-modssl
make all install clean
vi /etc/rc.conf
apache_enable="YES"
/usr/local/etc/rc.d/apache.sh start

Check your Apache install is working by pointing a web browser at http://localhost/

Now install sqwebmail:

cd /usr/ports/mail/sqwebmail
make WITH_CHARSET=all
make install
make clean (optional step)

The option "WITH_CHARSET=all" allows sqwebmail to view messages in a wide range of character sets. This
increases the size of the binary by about one megabyte with the extra translation tables which are included.

Sqwebmail comes in two parts: a small CGI stub which sends HTTP requests down a socket; and a pool of daemons
which perform the actual work. The CGI stub is installed in /usr/local/www/cgi-bin-dist by default, and there are
some graphics installed in /usr/local/www/data-dist/sqwebmail/*. These locations will work for a default Apache
install, but if you have changed the normal Apache configuration (e.g. DocumentRoot) then you may need to copy these
somewhere else.

9. Configure and start sqwebmail

sqwebmail’s main configuration file is /usr/local/etc/sqwebmail/sqwebmaild - however you almost certainly don’t
need to change it.

As usual, you will need to enable the sqwebmail daemon in /etc/rc.conf, and then call its startup script.

vi /etc/rc.conf
...
sqwebmaild_enable="YES"

/usr/local/etc/rc.d/sqwebmail-sqwebmaild.sh start
Starting sqwebmaild.

One other change is required: add the following line to /etc/crontab to periodically clean out old sessions:

0 * * * * bin /usr/local/share/sqwebmail/cleancache.pl

10. Test sqwebmail

If everything is working correctly, you should be able to point a web browser at
http://localhost/cgi-bin/sqwebmail/sqwebmail and be presented with a login screen, where you can enter a username

Courier worksheet

5 of 5

and password and login.

If this does not work:

Check your Apache logs - /var/log/httpd-access.log and /var/log/httpd-error.log
Check your mail log - /var/log/maillog
Check your debug log - /var/log/debug.log

Further documentation for sqwebmail can be found at http://www.courier-mta.org/sqwebmail/ and installed in
/usr/local/share/doc/sqwebmail/

11. Optional extra exercises

11.1 Give your neighbour a mail account on your system. Let them check that they can collect mail using POP3, IMAP
and Webmail.

11.2 A number of behaviours of courier-imap and sqwebmail can be changed by means of "account options". These can
be set globally, and overridden for individual accounts (although not for Unix system accounts). Try the following:

vi /usr/local/etc/authlib/authdaemonrc
change
DEFAULTOPTIONS=""
to
DEFAULTOPTIONS="wbnodsn=1,wbnochangingfrom=1,disableshared=1"
/usr/local/etc/rc.d/courier-authdaemond.sh restart

You can see account options for an account using "authtest username", and list all accounts together with their options
using "authenumerate -o"

The available options are:

disableshared=1
Disable shared folder functionality (hides the ’key’ icon in sqwebmail). Shared folders need
additional setting up, and only work for systems with virtual accounts.

disablepop3=1
disableimap=1
disablewebmail=1

Disable these types of access from this account

wbnochangingfrom=1 Webmail: disable ability for users to set the From: header on outgoing mail

wbnochangepass=1 Webmail: disable ability for users to change their passwords

wbusexsender=1 Webmail: add an X-Sender: header to outgoing mail

wbnoimages=1 Webmail: use a text-only interface

wbnodsn=1
Webmail: disable the "return receipt" functionality (Exim does not support this so we must
disable it anyway)

