Cisco Router Configuration Basics

Mark Tinka & Nishal Goburdhan

Router Components

- Bootstrap stored in ROM microcode brings router up during initialisation, boots router and loads the IOS.
- POST Power On Self Test stored in ROM microcode checks for basic functionality of router hardware and determines which interfaces are present
- ROM Monitor stored in ROM microcode used for manufacturing, testing and troubleshooting
- Mini-IOS a.k.a RXBOOT/boot loader by Cisco small IOS ROM used to bring up an interface and load a Cisco IOS into flash memory from a TFTP server; can also perform a few other maintenance operations

Router Components

- RAM holds packet buffers, ARP cache, routing table, software and data structure that allows the router to function; running-config is stored in RAM, as well as the decompressed IOS in later router models
- **ROM** starts and maintains the router
- Flash memory holds the IOS; is not erased when the router is reloaded; is an EEPROM [Electrically Erasable Programmable Read-Only Memory] created by Intel, that can be erased and reprogrammed repeatedly through an application of higher than normal electric voltage
- NVRAM Non-Volatile RAM holds router configuration; is not erased when router is reloaded

Router Components

Config-Register

- controls how router boots;
- value can be seen with "show version" command;
- is typically 0x2102, which tells the router to load the IOS from flash memory and the startup-config file from NVRAM

Purpose of the Config Register

Reasons why you would want to modify the config-register:

- Force the router into ROM Monitor Mode
- Select a boot source and default boot filename
- Enable/Disable the Break function
- Control broadcast addresses
- Set console terminal baud rate
- Load operating software from ROM
- Enable booting from a TFTP server

System Startup

- POST loaded from ROM and runs diagnostics on all router hardware
- Bootstrap locates and loads the IOS image; default setting is to load the IOS from flash memory
- IOS locates and loads a valid configuration from NVRAM; file is called startup-config; only exists if you copy the running-config to NVRAM
- startup-config if found, router loads it and runs embedded configuration; if not found, router enters setup mode

Overview

Router configuration controls the operation of the router's:

- Interface IP address and netmask
- Routing information (static, dynamic or default)
- Boot and startup information
- Security (passwords and authentication)

Where is the Configuration?

Router always has two configurations:

Running configuration

- In RAM, determines how the router is currently operating
- Is modified using the configure command
- **To see it:** show running-config
- Startup confguration
 - In NVRAM, determines how the router will operate after next reload
 - Is modified using the copy command
 - **To see it:** show startup-config

Where is the Configuration?

Can also be stored in more permanent places:

- External hosts, using TFTP (Trivial File Transfer Protocol)
- In flash memory in the router

Copy command is used to move it around

- copy run start copy run tftp
- copy start tftp
 copy tftp start
- copy flash start copy start flash

Router Access Modes

User EXEC mode – limited examination of router
 Router>

 Privileged EXEC mode – detailed examination of router, debugging, testing, file manipulation (router prompt changes to an octothorp)

Router#

- ROM Monitor useful for password recovery & new IOS upload session
- Setup Mode available when router has no startup-config file

External Configuration Sources

Console

- Direct PC serial access
- Auxiliary port
 - Modem access
- Virtual terminals
 - Telnet/SSH access
- TFTP Server
 - Copy configuration file into router RAM
- Network Management Software
 - e.g., CiscoWorks

Changing the Configuration

- Configuration statements can be entered interactively
 - changes are made (almost) immediately, to the running configuration
- Can use direct serial connection to console port, or
- Telnet/SSH to vty's ("virtual terminals"), or
- Modem connection to aux port, or
- Edited in a text file and uploaded to the router at a later time via tftp; copy tftp start or config net

Logging into the Router

Connect router to console port or telnet to router router>

router>enable

password

router#

router#?

Configuring the router

 Terminal (entering the commands directly) router# configure terminal router(config)# Connecting your FreeBSD Machine to the Router's Console Port

Connect your machine to the console port using the rollover serial cable provide

Go to /etc/remote to see the device configured to be used with "tip". you will see at the end, a line begin with com1

bash\$ tip com1 <enter>
router>
router>enable
router#

Address Assignments

New Router Configuration Process

Load configuration parameters into RAM

Router#configure terminal

Personalize router identification

- Router#(config)hostname RouterA
- Assign access passwords
 - RouterA#(config)line console 0
 - RouterA#(config-line)password cisco
 - RouterA#(config-line)login

New Router Configuration Process

Configure interfaces

- RouterA#(config)interface ethernet 0/0
- RouterA#(config-if)ip address n.n.n.n m.m.m.m
- RouterA#(config-if)no shutdown
- Configure routing/routed protocols
- Save configuration parameters to NVRAM
 - RouterA#copy running-config startupconfig
 - (Or write memory)

Router Prompts – How to tell where you are on the router

- You can tell in which area of the router's configuration you are by looking at the router prompts:
 - Router> => USER prompt mode
 - Router# => PRIVILEGED EXEC prompt mode
 - Router(config) => terminal configuration prompt
 - Router(config-if) => interface configuration prompt
 - Router(config-subif) => sub-interface configuration prompt

Router Prompts – How to tell where you are on the router

- You can tell in which area of the router's configuration you are by looking at the router prompts:
 - Router(config-route-map)# => route-map configuration prompt
 - Router(config-router)# => router configuration prompt
 - Router(config-line) # => line configuration prompt
 - rommon 1> => ROM Monitor mode

Configuring your Router

□ Set the enable (secret) password:

router(config) # enable secret "your pswd"

This MD5 encrypts the password

- The old method was to use the enable password command. But this is not secure (weak encryption) and is ABSOLUTELY NOT RECOMMENDED. DO NOT USE!
- Ensure that all passwords stored on router are (weakly) encrypted rather than clear text:
 - router(config) # service password-encryption

```
Configuring Your Router
```

To configure interface you should go to interface configuration prompt

```
router(config)# interface ethernet0(Or
0/x)
```

```
router(config-if)#
```

```
Save your configuration
```

```
router#copy running-config startup-
config
```

Configuring Your Router

Global: enable secret e2@fnog □ Interface: interface ethernet 0/0 ip address n.n.n.n m.m.m.m Router: router ospf 1 network n.n.n.n w.w.w.w area 0 Line: line vty 0 4

Global Configuration

Global configuration statements are independent of any particular interface or routing protocol, e.g.:

- hostname e2-@fnog
- enable secret tracke2
- service password-encryption
- logging facility local0
- logging n.n.n.n

Global Configuration

IP specific global configuration statements:

ip classless

ip name-server n.n.n.n

Static Route Creation

ip route n.n.n.n m.m.m.m g.g.g.g

n.n.n = network block

m.m.m.m = network mask denoting block size

g.g.g = next hop gateway destination packets
are sent to

The NO Command

Used to reverse or disable commands e.g

ip domain-lookup
no ip domain-lookup

router ospf 1 no router ospf 1

ip address 1.1.1.1 255.255.255.0 no ip address

Interface Configuration

□ Interfaces are named by slot/type; *e.g.*:

- ethernet0, ethernet1,... Ethernet5/1
- Serial0/0, serial1 ... serial3
- And can be abbreviated:
 - ethernet0 or eth0 or e0
 - Serial0/0 or ser0/0 or s0/0

Interface Configuration

Administratively enable/disable the interface router(config-if)#no shutdown router(config-if)#shutdown

Description router(config-if)#description ethernet link to admin building router

Global Configuration Commands

Cisco global config should always include:

- ip classless
- ip subnet-zero
- no ip domain-lookup

Cisco interface config should usually include:

- no shutdown
- no ip proxy-arp
- no ip redirects
- no ip directed-broadcast
- Industry recommendations are at http://www.cymru.com/Documents

Looking at the Configuration

Use "show running-configuration" to see the current configuration

Use "show startup-configuration" to see the configuration in NVRAM, that will be loaded the next time the router is rebooted or reloaded

Interactive Configuration

Enter configuration mode, using "configure terminal"

Often abbreviated to "conf t"

Prompt gives a hint about where you are:

```
router#configure terminal
router(config)#ip classless
router(config)#ip subnet-zero
router(config)#int e0/1
router(config-if)#ip addr n.n.n.n m.m.m.m
router(config-if)#ip shut
router(config-if)#no shut
```

Storing the Configuration on a Remote System

Requires: `tftpd' on a unix host; destination file must exist before the file is written and must be world writable...

```
router#copy run tftp
Remote host []? n.n.n.n
Name of configuration file to write [hoste2-rtr-
confg]? hoste2-rtr-confg
Write file hoste2-rtr-confg on Host n.n.n.n?
[confirm]
Building configuration...
```

```
router#
```

Restoring the Configuration from a Remote System

Use `tftp' to pull file from UNIX host, copying to runningconfig or startup-config

```
router#copy tftp start
Address of remote host [255.255.255.255]? n.n.n.n
Name of configuration file [hoste2-rtr-confg]?
Configure using hostel-rtr-confg from n.n.n.n?
  [confirm]
Loading hoste2-rtr-confg from n.n.n.n (via
  Ethernet0/0): !
[OK - 1005/128975 bytes]
[OK]
hoste2-rtr# reload
```

IOS has a built-in help facility;

- use "?" to get a list of possible configuration statements
- "?" after the prompt lists all possible commands:

router#?

- "<partial command> ?" lists all possible
 subcommands, e.g.:
 - router#show ?
 - router#show ip ?

"<partial command>?" shows all possible command completions

router#con?

configure connect

D This is different:

```
hostel-rtr#conf ?
memory Configure from NVRAM
network Configure from a TFTP network host
overwrite-network Overwrite NV memory from TFTP...
host
terminal Configure from the terminal
<cr>
```

This also works in configuration mode: router(config)#ip a? accounting-list accounting-threshold accounting-transits address-pool alias as-path

```
router(config)#int e0/0
router(config-if)#ip a?
   access-group accounting address
```

Can "explore" a command to figure out the syntax:

router(config-if)#ip addr ? A.B.C.D IP address

router(config-if)#ip addr n.n.n.n ?
A.B.C.D IP subnet mask

router(config-if)#ip addr n.n.n.n m.m.m.m ?
secondary Make this IP address a secondary address
<cr>

router(config-if)#ip addr n.n.n.n m.m.m.m
router(config-if)#

Getting Lazy Online Help

- TAB character will complete a partial word hostel-rtr(config)#int<TAB> hostel-rtr(config)#interface et<TAB> hostel-rtr(config)#interface ethernet 0 hostel-rtr(config-if)#ip add<TAB> hostel-rtr(config-if)#ip address n.n.n.n m.m.m.m
- Not really necessary; partial commands can be used: router#conf t router(config)#int e0/0 router(config-if)#ip addr n.n.n.n

Getting Lazy Online Help

- Command history
 - IOS maintains short list of previously typed commands
 - up-arrow or `^p' recalls previous command
 - down-arrow or ``n' recalls next command
- Line editing
 - left-arrow, right-arrow moves cursor inside command
 - `^d' or backspace will delete character in front of cursor
 - Ctrl-a takes you to start of line
 - Ctrl-e takes you to end of line

Connecting your FreeBSD machine to the Router's Console port

Look at your running configuration

Configure an IP address for e0/0 depending on your table

use n.n.n.n for table A etc

- Look at your running configuration and your startup configuration
- Check what difference there is, if any

Deleting your Router's Configuration

To delete your router's configuration

Router#erase startup-config OR Router#write erase Router#reload

Router will start up again, but in setup mode, since startup-config file does not exists

Using Access Control Lists (ACLs)

Access Control Lists used to implement security in routers

- powerful tool for network control
- filter packets flow in or out of router interfaces
- restrict network use by certain users or devices
- deny or permit traffic

Rules followed when comparing traffic with an ACL

- Is done in sequential order; line 1, line 2, line 3 etc
- Is done in the direction indicated by the keyword in or out
- Is compared with the access list until a match is made; then NO further comparisons are made
- There is an implicit "deny" at the end of each access list; if a packet does not match in the access list, it will be discarded

Using ACLs

Standard IP Access Lists

- ranges (1 99) & (1300-1999)
- simpler address specifications
- generally permits or denies entire protocol suite
- Extended IP Access Lists
 - ranges (100 199) & (2000-2699)
 - more complex address specification
 - generally permits or denies specific protocols
- There are also named access-lists
 - Standard
 - Extended
 - Named access-lists easier to manage as lines may be deleted or added by sequence number. NO need to delete and reinstall the entire ACL. Not supported with all features.

ACL Syntax

Standard IP Access List Configuration Syntax

- access-list access-list-number {permit | deny}
 source {source-mask}
- ip access-group access-list-number {in | out}

Extended IP Access List Configuration Syntax

- access-list access-list-number {permit | deny}
 protocol source {source-mask} destination
 {destination-mask}
- ip access-group access-list-number {in | out}
- Named IP Access List Configuration Syntax
 - ip access-list {standard | extended} {name |
 number}

Where to place ACLs

- Place Standard IP access list close to destination
- Place Extended IP access lists close to the source of the traffic you want to manage

What are Wild Card Masks?

- Are used with access lists to specify a host, network or part of a network
 To specify an address range, choose the next largest block size e.g.
 - to specify 34 hosts, you need a 64 block size
 to specify 18 hosts, you need a 32 block size
 to specify 2 hosts, you need a 4 block size

What are Wild Card Masks?

Are used with the host/network address to tell the router a range of addresses to filter

• Examples:

- To specify a host:
 - □ 196.200.220.1 0.0.0.0
- To specify a small subnet:
 - □ 196.200.220.8 196.200.220.15 (would be a /29)
 - Block size is 8, and wildcard is always one number less than the block size
 - □ Cisco access list then becomes 196.200.220.8 0.0.0.7
- To specify all hosts on a /24 network:
 - **196.200.220.0 0.0.255**

What are Wild Card Masks?

Short cut method to a quick calculation of a network subnet to wildcard:

255 – {netmask bits on subnet mask}

Examples:

to create wild card mask for 196.200.220.160 255.255.255.240

196.200.220.160 0.0.0.15 {255 - 240}

to create wild card mask for 196.200.220.0 255.255.252.0

196.200.220.0 0.0.3.255

ACL Example

- Router(config)#access-list <access list-number> {permit|deny} {test
 conditions}
- Router(config)#int eth0/0
- □ Router(config-if)#{protocol} accessgroup <access-list-number>
- e.g., check for IP subnets 196.200.220.80 to 196.200.220.95
 - **196.200.220.80 0.0.0.15**

ACL Example

- Wildcard bits indicate how to check corresponding address bit
 - 0=check or match
 - 1=ignore
- Matching Any IP Address
 - 0.0.0.0 255.255.255.255
 - or abbreviate the expression using the keyword `any'
- Matching a specific host
 - 196.200.220.8 0.0.0.0
 - or abbreviate the wildcard using the IP address preceded by the keyword `host'

Permit telnet access only for my network

```
access-list 1 permit 196.200.220.192 0.0.0.15
access-list 1 deny any
line vty 0 4
access-class 1 in
```

Standard IP ACLs Permit only my network

Extended IP ACLs: Deny FTP access through Interface E1

access-list 101 deny tcp 196.200.220.0 0.0.0.15 196.200.220.224 0.0.0.15 eq 21 access-list 101 deny tcp 196.200.220.0 0.0.0.15 196.200.220.224 0.0.0.15 eq 20 access-list 101 permit ip 196.200.220.0 0.0.0.15 0.0.0.0 255.255.255.255 interface ethernet 1 ip access-group 101 out

Prefix Lists

- □ Cisco first introduced prefix lists in IOS 12.0
- Used to filter routes, and can be combined with route maps for route filtering and manipulation
- Provide much higher performance than access control lists and distribute lists
- Are much easier to configure and manage
 - Using CIDR address/mask notation
 - Sequence numbers (as in named access-lists)

Prefix Lists

- Prefix lists have an implicit "deny" at the end of them, like access control lists
- Are quicker to process than regular access control lists
- If you do have IOS 12.0 or later, it is STRONGLY RECOMMENDED to use prefix lists rather than access lists for route filtering and manipulation

Prefix List Configuration Syntax

Prefix list configuration syntax

```
config t
  ip prefix-list list-name {seq seq-
  value} {permit|deny} network/len {ge
  ge-value} {le le-value}
```

- list-name name to use for the prefix list
- seq-value numeric value of the sequence; optional
- network/len CIDR network address notation

Prefix List Configuration Syntax

Prefix list configuration Syntax

- ge-value "from" value of range; matches equal or longer prefixes (more bits in the prefix, smaller blocks of address space)
- le-value "to" value of range; matches equal or shorter prefixes (less bits in the prefix, bigger blocks of address space)

Prefix List Configuration Example

To deny a single /28 prefix: ip prefix-list t2afnog seq 5 deny 196.200.220.192/28

To accept prefixes with a prefix length of /8 up to /24: ip prefix-list test1 seq 5 permit 196.0.0.0/8 le 24

To deny prefixes with a mask greater than 25 in 196.200.220.0/24: ip prefix-list test2 seq 10 deny 196.200.220.0/24 ge 25

To allow all routes: ip prefix-list test3 seq 15 permit 0.0.0.0/0 le 32

Disaster Recovery – ROM Monitor

- ROM Monitor is very helpful in recovering from emergency failures such as:
 - Password recovery
 - Upload new IOS into router with NO IOS installed
 - Selecting a boot source and default boot filename
 - Set console terminal baud rate to upload new IOS quicker
 - Load operating software from ROM
 - Enable booting from a TFTP server

Getting to the ROM Monitor

- Windows using HyperTerminal for the console session
 - Ctrl-Break

FreeBSD/UNIX using Tip for the console session

- <Enter>, then ~# OR
- Ctrl-], then Break or Ctrl-C

Linux using Minicom for the console session

Ctrl-A F

Disaster Recovery: How to Recover a Lost Password

Connect your PC's serial port to the router's console port
 Configure your PC's serial port:

- 9600 baud rate
- No parity
- 8 data bits
- 1 stop bit
- No flow control

Disaster Recovery: How to Recover a Lost Password

- Your configuration register should be 0x2102; use "show version" command to check
- Reboot the router and apply the Breaksequence within 60 seconds of powering the router, to put it into ROMMON mode

Rommon 1>confreg 0x2142 Rommon 2>reset

Router reboots, bypassing startup-config file

Disaster Recovery: How to Recover a Lost Password

Type Ctrl-C to exit Setup mode

Router>enable Router#copy start run (Only!!!) Router#show running

```
Router#conf t
Router(config)enable secret forgotten
Router(config)int e0/0...
Router(config-if)no shut
Router(config)config-register 0x2102
Router(config)Ctrl-Z or end
Router#copy run start
Router#reload
```

Cisco Router Configuration Basics

Questions?