IP Telephony with Asterisk

Sunday A. Folayan

There lived the PSTN

• A few years ago, everyone struggled to convert data (IP) into sound, and move it over the Public Switched Telephone Network (PSTN) infrastructure [using MODEMs]

Enter VoIP

The packetisation and transport of classic public switched telephone system audio over an IP network.

The analog audio stream is encoded in a digital format, with possible compression and filtering, before encapsulating it in IP for transport over LAN/WAN or the public internet Infrastructure

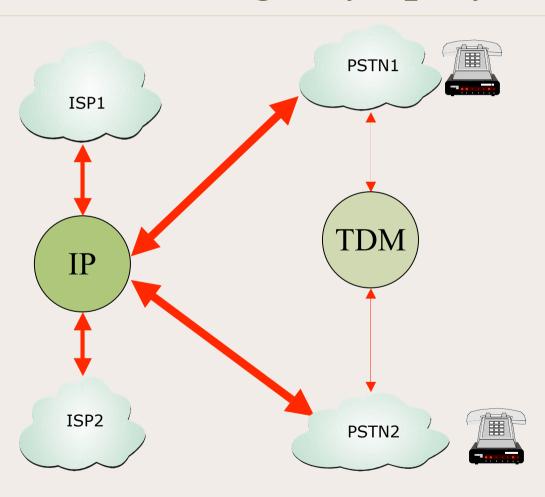
Convergence or Extinction?

• Now ... everyone is struggling to convert PSTN sound into data, and move it over well established IP links. [using CODECs]

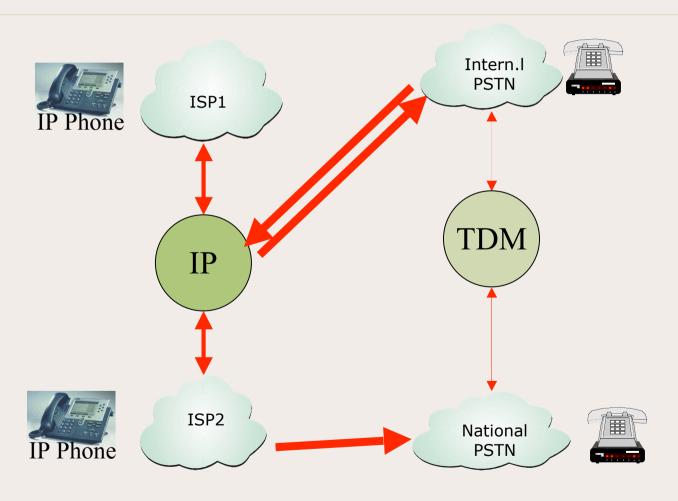
Technology has just reversed the process

IP vs VoIP

VoIP introduces a collection of protocols and devices that allow for the encoding, transport and routing of audio calls over IP networks.

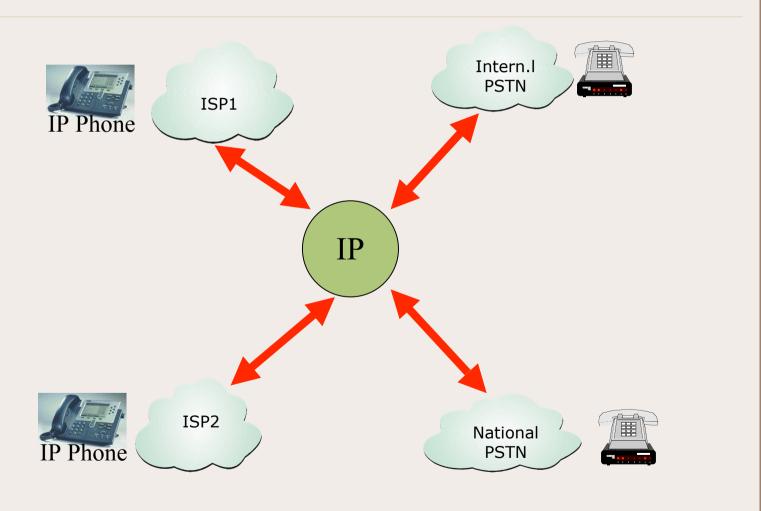

Voice → IP → Voice [P2P, Skype, Messenger]

Voice → IP → PSTN [Net2Phone, Deltathree]


Voice [PSTN] \rightarrow IP \rightarrow PSTN [iBasis, ITXC]

Voice [GSM] \rightarrow IP \rightarrow GSM/PSTN [???]

Games the big boys play ...


Little kids also play ...

The VoIP edge

- IP is Scaleable
- IP conserves capacity
- IP simplifies charging and billing
- A turf for ISPs to play on ...
 - Softphones for PC to Phone and PC to PC calls
 - Web-based applications for web to phone services
 - Move phones into the IT department and away from the expensive PBX consulting firm
 - Interconnecting office PBXs at zero network cost
 - Give ubiquitous access to the PBX for home/traveling employees
 - PBX features such as Voicemail, Call blocking, Call forwarding,
 Call Conferencing, Follow me etc as added services

Universal Access

VoIP Building block

VoIP is not built on TCP, but RTP

- RTP (Real-Time Transport Protocol)
- RTCP (Real-Time Control Protocol)
 - RTP is a UDP stream with no intelligence for QOS or resource reservation
 - Contains a packet number for detection of packet loss and re-sequencing of out of order packets.
 - Unidirectional: two streams in any call

VoIP Building block

- Calls are CODed to IP or DECoded from IP.
- CODECS vary in sample size, usually Kbits per second
- Decoding can include echo cancellation
- Decoding can compensate for jitter
- IP routers do not need to decode voice passing through them

VoIP Building block

Sample CODEC Sizes

_	G711alaw	64k
_	G711ulaw	64k
	II DC	1.71

ILBC 15k

2.15 - 44.2kSpeex Gsm 13k

G729 8k

5.3 - 6.3k G723 4k

Iax2 (trunked)

Codecs that compress to lower bandwidth are CPU intensive, unless the codec is implemented in hardware. Strike a balance!

Control Protocols

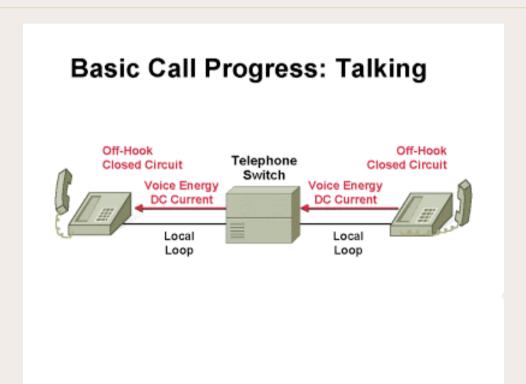
- H323 Complex, multiple flow, ancient
 - Has a large install base
- Session Initiation Protocol (SIP)
 - New, simple, only sets up RTP streams
- Cisco Skinny (Proprietary)
 - Allows complete phone customization
- MGCP (media Gateway Control Protocol)
 - Good but Not widely deployed as SIP
- IAX (Inter-Asterisk eXchange)
 - Simple, transverses NAT, Compressed

SIP

- SIP messages are HTTP-like and readable
- Supports Video
- There's lots of hardware SIP units available
 - Grandstream BT-101/2
 - Cisco 79xx)
- Not suited for Trunking (pbx to pbx)
- SIP is responsible for the increased use of VoIP

IAX(2)

- Inter Asterisk Exchange
- Not many Hardware phones support IAX.
- Soft Clients available for *unix/Windows
- Works behind NAT
- Has Trunking support built in
- Very low bandwidth requirement
- Built for asterisk


Phones

- Soft phones
 - X-lite <u>www.xten.com</u> (Windows)
 - Lipz <u>www.lipz4.com</u> (Linux)
 - DIAX http://www.laser.com/dante/diax/diax.html(Windows)
 - PhoneGaim <u>www.phonegaim.com(Linux)</u>
 - Linphone- www.linphone.org (FreeBSD)
 - Sjphone http://www.sjlabs.com/sjp.html (Windows, WinCE, Mac)
 - Lots of others

Phones

- Hard phones
 - Cisco 79XX's
 - Grandstream BT 10X's
 - Snom 100/200's
 - LOTS of h.323 phones from .tw ;-)
 - Many other phones

Most IP phones can work Peer to Peer

It is the Ability to use a PC as switch or PBX that really makes VoIP rock!! Simply loading a software PBX on a PC offers new possibilities ...

PBX Software

Call Manager

- Closed Source
- $-13 \rightarrow 16 \text{ CD's}$
- Web Interface
- Requires CCNA to setup
- Needs extremely powerful Server
- Leaves PRI/FXO/FXS to other devices

Asterisk

- Open Source
- A large array of tools and add-ons
- Uses industry-wide devices and equipment
- Can be setup in one night

What is in VoIP for operators?

Some uncharted colonies ...

- WiFi/WiMax Phones for universal access
- True Global roaming ;-)
- Enum adoption
- Numbering plan, being able to really "Play"
- Receivership for Long Distance companies

Asterisk Open-Source IP PBX

Asterisk is not ...

- A billing system
- A CRM system
- A web server or XML server (re: Cisco 79xx)
- A configuration tool for VoIP devices
- A voice recognition system
- A USENET or email client

Asterisk is a

- Telephony gateway (TDM PRI,POTS)
- VoIP Gateway (IP channels)
- IVR system (Interactive Voice Response)
- Voicemail system
- Meet-me Conference system
- Scriptable telephony-to-anything (Perl, C, etc.)
- Automatic Call distribution (ACD) system

Practical Uses (office)

- Ditch your LD company
- Interconnect office PBXs at zero network cost
- Get "Unified Messaging"
- Give ubiquitous access to the PBX for home/traveling employees
- Disaster recovery scenarios
- Move phones into your IT department and away from your expensive PBX consulting firm
- Eliminate adds/moves/changes as physical chores

System Requirements

- No clear rule of thumb on processor size; at least 400mhz PIII recommended
- Works on almost all Linux Distributions and FreeBSD
- Source + binaries (including sounds) are ~35Mb
- Using complex codecs (i.e.: G.729, speex, etc.) will increase processor load dramatically

Estimated CPU Sizing

Purpose	Simultaneous calls	Minimum Recommendation
Hobby System	<5	X86 400Mhz 256MB
SoHo System	5 - 10	X86 1Ghz 512Mb
SMB System	10 - 15	X86 3Ghz 1GB
Large	>15	Dual CPU, Clusters

Compatible Interfaces

Many interfaces for converting between Voice/IP/TDM are compatible with Asterisk. These include

- POTS cards (Digium, Zapata, Voicetronix, etc.)
- TDM Digital (AdTran VoFR, Digium E1/T1, etc.)
- CAPI (ISDN card support for Linux ISDN driver)
- USB dongle for FXS
- Modem drivers for certain modems
- Speaker/headphones via soundcard

Basic Installation Steps

- 1. Setup CPU and operating System
- 2. Install desired hardware based on application intended
- 3. Download asterisk from www.asteriskpbx.org
- 4. Compile and install with "Make"
- 5. Load Appropriate drivers [None is needed for IP or soft phone]
 - 1. Configure modules.conf
 - 2. Configure either sip.conf or iax.conf
 - 3. Configure extensions.conf
- 6. Start Asterisk
- 7. Make calls!

Extensions.conf (Call Flow)

- Calls come in on channels and are then handed to the "extensions.conf" file, which is the dialplan
- Dialplan contains logical sections of matches called 'Contexts,' and each channel sends a call into the dialplan with a context name and a dialed number
- The dialplan then matches (with modified regexp's) the number being **dialed**, and runs applications accordingly
- Each match on the dialed number has an order of steps called 'Priorities', and are indicated with an integral incrementing number (BASIC-like)

Other use

- Call queues you can build a call center with Asterisk, with various call weightings and agent logins/hot seating
- Multi-ring, cascading ring with different technologies (inbound calls forward to your desk line and your cell phone first answer gets it)
- Multi-language support with same dialplan
- Festival integration for voice synthesis

References

- http://www.asterisk.org/
- http://www.digium.com/
- http://www.voip-info.org
- http://www.loligo.com/asterisk/
- http://www.wwworks-inc.com/asterisk/
- http://www.xten.com/
- http://resources.nznog.org/Wednesday-220306/JonnyMartin-AsteriskPBX/NZNOG06-Asterisk_JM.pdf
- http://www.onlamp.com/pub/a/onlamp/2003/07/03/asterisk.html
- http://www.nznog.org/crigby-voip-intro.ppt
- http://www.loligo.com/asterisk/misc/presentations/asterisk-overview.v1.0.ppt
- http://docbox.etsi.org/tispan/open/enum-workshop-20040224-sophia/08.%20r%20stastny%20austria_v4.ppt
- http://www.ietf.org/proceedings/03jul/slides/enum-3/enum-3.ppt
- http://www.ispa.at/downloads/c8431676f72b_2003-05_ispa_enum_voip_stastny.ppt