
DNSSEC HOWTO, a tutorial in disguise
Olaf Kolkman
Version 1.8.4-prerelease (svn: 106)

May 30, 2008

Download the most recent version of the PDF version here:
http://www.nlnetlabs.nl/dnssec_howto/dnssec_howto.pdf

Contents

I Securing DNS data 5

1 Configuring a recursive name server to validate answers 5
1.1 Introduction . 5
1.2 Warning . 5
1.3 Configuring the caching forwarder . 6

1.3.1 Configuring a trust anchor . 6
1.3.2 Testing . 8

1.4 Finding trust-anchors . 11
1.5 Lookaside Validation . 12

1.5.1 Configuring lookaside validation 13
1.5.1.1 testing . 14

1.6 Some Troubleshooting Tips . 17

2 Securing a DNS zone 18
2.1 Introduction . 18
2.2 Configuring authoritative servers . 19
2.3 Creating key pairs . 19

2.3.1 Key Maintenance Policy . 19
2.3.1.1 Key- and zone-signing keys. 19

2.3.2 Creating the keys . 20
2.4 Zone-signing . 22
2.5 Caching forwarder configuration . 29
2.6 Zone Re-Signing . 29
2.7 Troubleshooting Signed Zones . 29
2.8 Possible problems . 31

3 Delegating of signing authority; becoming globally secure 31
3.1 Introduction . 31
3.2 Practical steps . 32
3.3 Possible problems . 33
3.4 Registering with a DLV registry . 33

http://www.nlnetlabs.nl/dnssec_howto/dnssec_howto.pdf

CONTENTS

4 Rolling keys 34
4.1 DNS traversal . 35
4.2 ”Pre-Publish” and ”Double Signature” rollovers 35
4.3 Tools . 36
4.4 ZSK rollover . 36

4.4.1 ZSK preparation (production phase) 37
4.4.2 ZSK rollover (phase1) . 38
4.4.3 ZSK Cleanup (phase2) . 39
4.4.4 Modifying zone data during a rollover 40

4.5 Key-signing key rollovers . 40
4.5.1 KSK preparation (production phase) 40
4.5.2 ZSK rollover (phase 1) . 41
4.5.3 KSK cleanup (phase 2) . 42
4.5.4 Multiple KSKs . 42

II Securing communication between Servers 43

5 Securing zone transfers 43
5.1 Introduction . 43
5.2 Generating a TSIG key . 43

5.2.1 Generating a TSIG secret with dnssec-keygen 44
5.2.2 Other ways to generate secrets . 45

5.3 Configuring TSIG keys . 45
5.4 Primary servers configuration of TSIG . 46
5.5 Secondary servers configuration of TSIG 46
5.6 Securing the NOTIFY message too . 47
5.7 Troubleshooting TSIG configuration . 47
5.8 Possible problems . 48

5.8.1 Timing problems . 48
5.8.2 Multiple server directives . 48

III Troubleshooting tools 49

6 Using drill for troubleshooting 49

7 Using dig for troubleshooting 49

8 DNSSEC tools 50

IV Appendices 54

A BIND installation 54

B Estimating zone size increase 55

C Generating random numbers 55

D Perl’s Net::DNS::SEC library 56

2

CONTENTS

About This Document

This document was developed as part of the RIPE NCC project on the de-
ployment of DNSSEC. The document started as being an addendum to the
RIPE NCC DNSSEC course. It was found to be more useful as a stand alone
”HOWTO” for setting up DNSSEC in ones own environment.

In the cause of time the document has been updated during workshops and
based on feedback by folk using the document. It has grown beyond the size of
your typical HOWTO.

In this HOWTO, which, because of its bulky nature is more of a tutorial in
disguise, we touch upon the following topics:

Part I, about the aspects of DNSSEC that deal with data security.

• Creating an island of security (Chapter 1, “Configuring a recursive
name server to validate answers” and Chapter 2, “Securing a DNS
zone”) by configuring a recursive name server to validate the signed
zones served by your organisations authoritative name servers. When
you have learnt and implemented this, you can be sure that DNS data
in your organisation is protected from change. Once you have created
an island of security it is a small step to become part of a chain of
trust.
• Delegating signing authority; building a chain of trust (Chapter 3,

“Delegating of signing authority; becoming globally secure”). You will
learn how to exchange keys with your parent and with your children.
• Chapter 4, “Rolling keys” covers maintaining keys and ensuring that

during the rollover process clients will be able to maintain a consistent
view of your DNS data.

Part II, covering aspects that deal with server to server security and transaction
security.

• Chapter 5, “Securing zone transfers” is on the use of transaction secu-
rity (TSIG) to provide authorisation and integrity for zone transfers.

Part III, describes a few tools that may turn out handy while figuring out what
might have gone wrong.

The documentation is based on the so called DNSSEC-bis specifications that
where finalised by the IETF DNSEXT working group in July 2004 and published
in March 2005 as [3, 5, 4].

As of January 2008 the author is aware of the following open-source and or
freeware implementations of the DNSSEC-bis specifications: BIND 9.4.2, Un-
bound 1.0.0 and NSD 3.0.7. All our examples are based on BIND 9.5.0 and
Unbound 1.0.0.

This document is not intended as an introduction to DNS. Basic knowledge
of DNS and acronyms used is assumed. We have tried not to use jargon but
when unavoidable we have tried to explain the meaning. If you want to know
more about the topic of DNS in general then Paul Albitz and Cricket Lui’s[2] or

3

CONTENTS

Ron Aitchinson’s [1] text books provide an excelent introduction.
This document will be subject to change. Please regularly check for new

versions. <http://www.nlnetlabs.nl/dnssec_howto/>. Your corrections and
additions are appreciated.

4

http://www.nlnetlabs.nl/dnssec_howto/

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

Part I

Securing DNS data

This part deals with securing data in zone files. We describe how to
generate and manage keys, how to set up a recursive name server to
validate signed zone data and how to sign and serve zones.

1 Configuring a recursive name server to validate answers

1.1 Introduction

We plan to configure a recursive name server to validate the data it receives.
Users that use this recursive name server as their resolver will, then, only receive
data that is either secure and validated or not secured in any way. As a result,
secured data that fails validation will not find its way to the users1. Having
a validating recursive name server protects all those that use it as a forwarder
against receiving spoofed DNS data.

Figure 1 illustrates how to configure the recursive DNS servers with a trusted
key for ”example.com” so that all the data served by the authoritative servers for
”example.com” is validated before it is handed to the protected infrastructure
that have the recursive servers configured as their forwarder (the name servers
that usually are assigned through DHCP or configured in /etc/resolv.conf).

By configuring a public key for a specific zone, we tell the caching forwarder
that all data coming from that zone should be signed with the corresponding
private key. The zone acts as a secure entry point into the DNS tree and the key
configured in the recursive name server acts as the start for a chain of trust. In
an ideal situation you have only one key configured as a secure entry point: the
key of the root zone.

We assume you have configured your BIND nameserver to be recursive only
or that you use UNBOUND, which is recursive only.

We also assume that that name server in your organisation has been con-
figured to run as an authoritative server for a secured zone called example.net.
Notes on how to set up a secured zone can be found below in Chapter 2, “Securing
a DNS zone”

1.2 Warning

Your recursive name server will treat the zones for which you configured trust
anchors as being secured. If the zones for which you have configured trust anchors
change their keys you will also have to reconfigure your trust anchors. Failure to
do so will result in the data in these zones, or any child, being marked as bogus
and therefore becoming invisible to users.

1As a result users can trust the data they are dealing with, provided that the path between
the validating recursive name server and the stub resolver can be trusted. On a shared network
such as an IEEE802.11 network this is not the case.

5

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

Figure 1: DNS environment

1.3 Configuring the caching forwarder

See AppendixA for information on compiling BIND with the correct switches
to allow for DNSSEC. Do not forget enter the dnssec-enable yes; and
dnssec-validation yes; statements in the options directive of your named.conf.2

As an alternative to bind you could use UNBOUND as a DNSSEC aware re-
cursive nameserver. UNBOUND does not need any special configuration options
except for the configuration of a trust-anchor to perform DNSSEC validation.

1.3.1 Configuring a trust anchor

A trust anchor is a public key that is configured as the entry point for a chain
of authority. In the ideal case —where the root is signed and chains of trusts
can be constructed through top-level domains to end-nodes — validating name
servers would only need one of these trust anchors to be configured. During early
deployment you will probably want to configure multiple trust anchors.

In Figure 2 we show a zone tree. In this tree, the domains ripe.net,
194.in-addr.arpa, 193.in-addr.arpa and 0.0.193.in-addr.arpa are as-
sumed to be signed. It is also assumed that there is a secure delegation between
193.in-addr.arpa and 0.0.193.in-addr.arpa. In order to validate all these
domains, the validating DNS client would have to configure trust anchors for

2the dnssec-validation yes; directive is only needed in the version 9.4 series. It will be
the default for the 9.5 series of BIND

6

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

Figure 2: Trust anchors in the DNS tree

ripe.net, 194.in-addr.arpa and 193.in-addr.arpa.3

To configure a trust-anchor you have to obtain the public key of the zone that
you want to use as the start of the chain of authority that is to be followed when
the data is validated. It is possible to get these straight from from the DNS, but
there are two reasons why this may not be advisable.

Firstly, you have to establish the authenticity of the key you are about to
configure as your trust anchor. How you do this depends on on what method the
zone owner has made available for out of band validation of the key.

• You could do this by visiting the zone owners secure website and validate
the key information. For instance, the RIPE NCC signs a number of reverse
zones. They publish their public keys on through <https://www.ripe.
net/projects/disi/keys/>
• You could give the zone owner a call if you personally know them.
• You could trust the key that is published on the bill you just received from

the zone owner.
• You could just believe that your OS vendor did the validation on your

behalf.

Secondly, you may have a choice of public keys, in which case you need to
3 Fetching and maintaining all these trust anchors in the absence of a signed root clearly

does not scale and is one of the problems that early deployers will have to deal with. BIND
9.3.2 contains a so called ”look-aside” validation option that may help with this trust anchor
distribution issue. Also see section 1.5.

7

https://www.ripe.net/projects/disi/keys/
https://www.ripe.net/projects/disi/keys/

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

select the the proper ”Secure Entry Point” key.
In DNSSEC a difference is made between key- and zone-signing keys. Key-

signing keys exclusively sign the DNSKEY RR set at the apex, while zone-signing
keys sign all RR sets in a zone. 4. Key-signing keys are often used as Secure
Entry Points (SEP) keys. These SEP keys are the keys intended to be first used
when building a chain of authority from a trust anchor to signed data. We advise
a one-to-one mapping between SEP keys and key-signing keys. In practise key-
signing keys have a lower rollover frequency than zone-signing keys so you should
configure the SEP i.e. key-signing keys.

In addition to having the proper public key you should either be aware of
the rollover policy of the zone owner, or that you have a tool that takes care of
automated rollover. Failure to modify the trust anchor before the corresponding
SEP key is rolled will result in validation failures.

Assume you have obtained the key-signing keys of nlnetlabs.nl., 193.in-addr.arpa.,
and 195.in-addr.arpa.. To configure those key as a trust anchor you will have
tell your recursive nameserver to use those. For both BIND and UNBOUND you
can follow the following procedure.

Create a seperate file that contains the keys in a trusted-keys directive as
shown in figure 3. The format is similar to the DNSKEY RR except that the
”DNSKEY” label, the CLASS and the TTL, are omitted and quotes are placed
around the name and the public key material.

You can use the include statements in both UNBOUND and BIND to read
the files with the trusted keys directive into your configuration files.

1.3.2 Testing

As soon as a trusted-key has been configured, data from that zone or its sub
zones will be validated by the caching forwarder. You can test this by querying
your server5. If data is validated by the caching forwarder the ad-bit will be set
by the name server (see the ’flags’ in the following example).

; <<>> DiG 9.4.1-P1 <<>> @192.168.2.204 example.net SOA +dnssec +multiline +retry=1

; (1 server found)

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 12204

;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 3

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096

;; QUESTION SECTION:

;example.net. IN SOA

;; ANSWER SECTION:

example.net. 100 IN SOA ns.example.net. olaf.nlnetlabs.nl. (

2002050501 ; serial

100 ; refresh (1 minute 40 seconds)

4For an example see figure 2.4 where the DNSKEY RRset is signed with two keys with key
id 17000 and 49656 and the other RRsets in the zone with the key with keyid 17000; the key
with keyid 17000 is the zone-signing key and the key with key id 49656 is the key-singing key

5We use the bind supplied dig tool, alternatively you can use NLnet Labs’ drill, see section 6

8

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

// Trusted keys
// These are examples only, do not use in production

trusted-keys {
"nlnetlabs.nl." 3 5
"AQPzzTWMz8qSWIQlfRnPckx2BiVmkVN6LPupO3mbz7Fh
LSnm26n6iG9NLby97Ji453aWZY3M5/xJBSOS2vWtco2t
8C0+xeO1bc/d6ZTy32DHchpW6rDH1vp86Ll+ha0tmwyy
9QP7y2bVw5zSbFCrefk8qCUBgfHm9bHzMG1UBYtEIQ==";

"193.in-addr.arpa." 257 3 5
"AwEAAc2RnCT1gjU22FbNC1baMQec77fq60z2HlCKscYl
3idBZTp703ApMfAAFcMZQGkSmo8NP+47KqZJwG9ISLaT
bUais3khgFVrf7lIRzPJAMlXHsmOMmpq5xBORF66EDt/
u2dau3qqzOfb/BrKCklGgnwBosgqaSPmWBQTuzJFqzi3
4FQIt4xFHWYyt3B5qZ9h4dpUL96etvvx1N+z8tlXjhlm
Vauw1EPZnz2rmY6HEJFS2zjaI1FrDtY5/pooJjRWjobk
RXL3iqjd5J/cmDikxjQCjwnbwBS+YvcwZCos4n9Xh2l5
kf2kOcq9xCmZvEplfWJ9lWbVkfhpWaM8qXXPN8E=";

"195.in-addr.arpa." 257 3 5
"AwEAAaMN4kOrGaiHJBikvcf+mhPxzprL85Q40VA0hbRc
a8FDDn6Xlkuj95Nizy2vMrOy1MjIjo7a+GACGp6C/Rdj
6nDimsRrUBr/G/dq+zBgg8qvRXWJZhx+zNCgkfv9gs1B
eRlPnjXr1K/x5viTzQRDK3SYfHiCMVNxuYN+T7kniDLx
QRUI/ASF3YxqNQ+Oo+T5L6nYtO7uLeAUdxzToRdIHaey
iSnq52boA/3Yg6X8Kbo1uAUpeU4QDD7bOwq+obmaToLU
m/FvNUKx0l9U2P2ItcsqRCHQut/RxK2pj8GGRDCDco1J
5UAi7hiwP1eEWmbigbPnDQg++QDjegV39vTJQ2c=";

};

Figure 3: trust anchor configuration

200 ; retry (3 minutes 20 seconds)

604800 ; expire (1 week)

100 ; minimum (1 minute 40 seconds)

)

example.net. 100 IN RRSIG SOA 5 2 100 20080629121220 (

20080530121220 17000 example.net.

UnFX7FtzWLeE1kpOqt8J7aO7TlAqyUBi57Fe8aeVi0aW

PQD0HvPt1mHr45XOJDkUid8iuXbZW5UExo0kPZ+5cYPF

jNNXLk78eVTdqrc1i5imJBifKRf//lUHNEUnioNK/Z7O

FvNAeLpQKSuvp8U+pZLHedQXibbQETu8nhlecTU=)

;; AUTHORITY SECTION:

example.net. 100 IN NS ns.example.net.

example.net. 100 IN RRSIG NS 5 2 100 20080629121220 (

20080530121220 17000 example.net.

LwnoMhbs3ovHhxRr0mz5hQe2qT2x6ZbTvqyUJRXmKHtD

JflBE3O6kCadSXWgm5gY6Bnh28+1IPAuytF5uO9Qlvu4

9

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

DE6vnQHf3zWM4qmZN+EmK9cy5rISyrlVg3gYnzncQIvc

qCVly8H5EGQ1/P0ndQi6vo9tcQhkQvyrIloqWx4=)

;; ADDITIONAL SECTION:

ns.example.net. 100 IN A 192.168.2.203

ns.example.net. 100 IN RRSIG A 5 3 100 20080629121220 (

20080530121220 17000 example.net.

rKcQSzVkCnSyJiPtReTW/psr/smDkoUzQ2G2KLp0QA20

Bkf2T+DI8PLYUZrd8VPWnBDLPOTd7o+1ZcJp4cWQBGt/

umhgMjoTq9siZ3/1NI/Cykjt0Dqf20cCH/zRAQfJ1HBm

FXesnpa57QI30hA0dsTP4r4X2G39RHH79T/4EMA=)

;; Query time: 6 msec

;; SERVER: 192.168.2.204#53(192.168.2.204)

;; WHEN: Fri May 30 15:16:54 2008

;; MSG SIZE rcvd: 639

It is important that you check that the validation is working correctly. This
can be done by using the BIND log facilities on the machine that is configured
as the validating recursive name server.

In BIND messages of a certain category can be logged to separate chan-
nels. The channels determine where the messages go and to what severity level
they will need to be reported. The relevant category for DNSSEC validation is
dnssec. In the example below the errors of the dnssec category are directed to
the dnssec log channel. In order to follow the validation process the channel
has to log at least severity debug 3.

logging {
channel dnssec_log { // a DNSSEC log channel

file "log/dnssec" size 20m;
print-time yes; // timestamp the entries
print-category yes; // add category name to entries
print-severity yes; // add severity level to entries
severity debug 3; // print debug message <= 3 t

};

category dnssec { dnssec_log; };
}

The output in the log file will look similar to the output below. The attempt
for positive response validation shows how the validator tries to prove that the
RR set is trusted by following the chain of trust to the appropriate secure entry
point, your trusted-key statement. Chains of trust (see figure 4) start by the
validation of a signature over a DNSKEY RRset, then these keys are used to
validate the DS RRset that point to DNSKEY RRs in a child zone – which
validates the DNSKEY RRs in the child zone –, or the DNSKEYs can be used
to validate the data you have queried for. The log reflects the activity of the
validator following the chain of trust.

10

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

Figure 4: Chain of Trust

validating @0x845e00: example.net SOA: starting

validating @0x845e00: example.net SOA: attempting positive response validation

validating @0x848600: example.net DNSKEY: starting

validating @0x848600: example.net DNSKEY: attempting positive response validation

validating @0x848600: example.net DNSKEY: verify rdataset (keyid=49656): success

validating @0x848600: example.net DNSKEY: signed by trusted key; marking as secure

validator @0x848600: dns_validator_destroy

validating @0x845e00: example.net SOA: in fetch_callback_validator

validating @0x845e00: example.net SOA: keyset with trust 7

validating @0x845e00: example.net SOA: resuming validate

validating @0x845e00: example.net SOA: verify rdataset (keyid=17000): success

validating @0x845e00: example.net SOA: marking as secure

validator @0x845e00: dns_validator_destroy

1.4 Finding trust-anchors

It is not trivial to find and maintain trust anchors. If you want to get started with
validation of DNSSEC here are a few places where you can find more information.

• RIPE NCC maintains a set of keys on their secured website under https:
//www.ripe.net/projects/disi/keys/index.html (Note that this is a
secured website, check the certificate).
• The Swedish TLD is signed. Its key can be found at https://dnssec.
nic.se/key.html. (Also check the certificate of this site).
• The DNSSEC spider tries to locate secured zones and checks their status.

You could use this site to find secured zones. See http://secspider.cs.
ucla.edu/islands.html.

Since maintaining trust anchors is a pain you may also want to read the
section 1.5 on lookaside validation.

1.5 Lookaside Validation

Remember figure 2. If you would like to validate all these islands you will have
to configure many trust-anchors, as in the example in figure 3.

11

https://www.ripe.net/projects/disi/keys/index.html
https://www.ripe.net/projects/disi/keys/index.html
https://dnssec.nic.se/key.html
https://dnssec.nic.se/key.html
http://secspider.cs.ucla.edu/islands.html
http://secspider.cs.ucla.edu/islands.html

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

In order to deal with this problem in absence of secure delegation from a
small set of trust-anchors (ideally only 1, the root), BIND supports, as of version
9.3.2, a 6 mechanism called lookaside validation [14, 13].

In the lookaside validation a DLV registry will maintain all the trust-anchors
you trust them to do the “Good Thing”. The maintainers of zones that are secure
register their trust-anchors with the DLV registry and (non-standard extensions)
in BIND (as of 9.3.2) will allow you, operator of a validating nameserver, to make
use of all trust anchors that are present in the DLV tree.

In the DLV scheme the trust anchors are published in a dedicated domain
(dlv.isc.org in the figure 5). Whenever a validating resolver recognises that a
zone is signed it will first try to validate it by assessing if it is within the island
of trust configured by its local trust anchors. When the validated domain is not
in a trusted island the resolver will lookup perform a lookup in the DLV domain
and use the trust anchor from that zone if and when available.

Figure 5: Trust anchors in the lookaside tree

1.5.1 Configuring lookaside validation

What follows is a generic description if you want to configure ISC’s DLV as your
authoritative lookaside domain you may want to read http://www.isc.org/
ops/dlv/.

In the example below we assume that dlv-registry.org is the registry of
our choice.

6Authors opinion inserted here: I am not very enthusiastic about lookaside validation
Since anybody can, in theory, start a DLV registry it will very difficult to know who to trust

and to get a full picture of which zones are secured and which not. On the other hand it is
a mechanism to provide early deployment maximum benefit. At some point this section may
disappear from the HOWTO.

At the moment of writing the author advises to use ISC’s DLV registry.

12

http://www.isc.org/ops/dlv/
http://www.isc.org/ops/dlv/

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

You have to perform two (additional) steps in order to turn on lookaside
validation.

Configure a trust anchor for the DLV registry. You do this by defining a
trust anchor for the island of trust defined by dlv-registry.org in named.conf.
Obviously, this trust-anchor is not exclusive, any trust-anchor configured in your
trusted-keys statement will have preference over the data in the DLV registry.

trusted-keys {
//
// this trust-anchor defines dlv-registry.org as a trusted island.
//
"dlv-registry.org." 257 3 5

"AQPXP7B3JTdPPhMl ... u82ggY2BKPQ==";
//
// Other trust anchors below.
//

"nlnetlabs.nl." 3 5
"AQPzzTWMz8qSWI ... zMG1UBYtEIQ==";

"193.in-addr.arpa." 257 3 5
"AwEAAc2RnCT1gj ... pWaM8qXXPN8E=";

"195.in-addr.arpa." 257 3 5
"AwEAAaMN4kOrGai ... DjegV39vTJQ2c=";

};

Configuring how the DNS name space anchors in the DLV name space. By
using the dnssec-lookaside statement in the options section of named.conf.
The statement takes two arguments the first one is the domain in the DNS for
which lookaside validation is to be applied. Usually this will be the full name
space so the "." (root) is configured. The second argument is the name of the
trust-anchor where a lookup should be performed for a DLV record.

It is best to configure only one DLV trust-anchor.

options {
// DNSSEC should be turned on, do not forget
dnssec-enable yes;
dnssec-validation yes;
// This sets the dlv registry "dlv-registry.org"
dnssec-lookaside "." trust-anchor "dlv-registry.org.";

// other options are skipped in this example
};

13

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

1.5.1.1 testing When you have your logging configured as described in sec-
tion 1.3.2 i.e. you log errors of the dnssec category are directed to a channel
that logs at least at severity debug 3, then your log output when querying for
example.net SOA will be similar to what is shown below.

First, the amount of log-ouput to validate one query covers more than one
page of fine print. On a production server this data for several validation se-
quences will be print mixed. It will be very hard to debug from logfiles on
production servers if you have not first looked at what happens for a single
query.

Second, the structure is that the validator first finds DNSSEC RRs, notices
that those records are not secure according ’plain DNSSEC’ and then moves to
DLV validation.

Third, small chains of trust are build, from the DLV trust-anchor, via
DNSKEY RRs to the signatures over the data. Trie to follow these trust an-
chors in the example output so it will be easier to identify them in production
logs.

validating @0x842e00: . NS: starting

validating @0x842e00: . NS: looking for DLV

validating @0x842e00: . NS: plain DNSSEC returns unsecure (.): looking for DLV

validating @0x842e00: . NS: looking for DLV dlv-registry.org

validating @0x842e00: . NS: DLV lookup: wait

validating @0x84b600: example.net SOA: starting

validating @0x84b600: example.net SOA: looking for DLV

validating @0x84b600: example.net SOA: plain DNSSEC returns unsecure (.): looking for DLV

validating @0x84b600: example.net SOA: looking for DLV example.net.dlv-registry.org

validating @0x84b600: example.net SOA: DNS_R_COVERINGNSEC

validating @0x84b600: example.net SOA: covering nsec: trust 1

validating @0x84b600: example.net SOA: DLV lookup: wait

validating @0x84ee00: dlv-registry.org DLV: starting

validating @0x84ee00: dlv-registry.org DLV: attempting negative response validation

validating @0x84f600: dlv-registry.org SOA: starting

validating @0x84f600: dlv-registry.org SOA: attempting positive response validation

validating @0x850e00: example.net.dlv-registry.org DLV: starting

validating @0x850e00: example.net.dlv-registry.org DLV: attempting positive response validation

validating @0x851600: dlv-registry.org DNSKEY: starting

validating @0x851600: dlv-registry.org DNSKEY: attempting positive response validation

validating @0x851600: dlv-registry.org DNSKEY: verify rdataset (keyid=8916): success

validating @0x851600: dlv-registry.org DNSKEY: signed by trusted key; marking as secure

validator @0x851600: dns_validator_destroy

validating @0x84f600: dlv-registry.org SOA: in fetch_callback_validator

validating @0x84f600: dlv-registry.org SOA: keyset with trust 7

validating @0x84f600: dlv-registry.org SOA: resuming validate

validating @0x84f600: dlv-registry.org SOA: verify rdataset (keyid=27467): success

validating @0x84f600: dlv-registry.org SOA: marking as secure

validator @0x84f600: dns_validator_destroy

validating @0x84ee00: dlv-registry.org DLV: in authvalidated

validating @0x84ee00: dlv-registry.org DLV: resuming nsecvalidate

validating @0x850e00: example.net.dlv-registry.org DLV: in fetch_callback_validator

validating @0x850e00: example.net.dlv-registry.org DLV: keyset with trust 7

validating @0x850e00: example.net.dlv-registry.org DLV: resuming validate

validating @0x850e00: example.net.dlv-registry.org DLV: verify rdataset (keyid=27467): success

validating @0x850e00: example.net.dlv-registry.org DLV: marking as secure

validator @0x850e00: dns_validator_destroy

validating @0x84b600: example.net SOA: in dlvfetched: success

validating @0x84b600: example.net SOA: DLV example.net found

validating @0x84b600: example.net SOA: dlv_validator_start

validating @0x84b600: example.net SOA: restarting using DLV

validating @0x84b600: example.net SOA: attempting positive response validation

14

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

validating @0x84f600: dlv-registry.org NSEC: starting

validating @0x84f600: dlv-registry.org NSEC: attempting positive response validation

validating @0x84f600: dlv-registry.org NSEC: keyset with trust 7

validating @0x84f600: dlv-registry.org NSEC: verify rdataset (keyid=27467): success

validating @0x84f600: dlv-registry.org NSEC: marking as secure

validator @0x84f600: dns_validator_destroy

validating @0x84ee00: dlv-registry.org DLV: in authvalidated

validating @0x84ee00: dlv-registry.org DLV: looking for relevant nsec

validating @0x84ee00: dlv-registry.org DLV: nsec proves name exists (owner) data=0

validating @0x84ee00: dlv-registry.org DLV: resuming nsecvalidate

validating @0x84ee00: dlv-registry.org DLV: nonexistence proof(s) found

validator @0x84ee00: dns_validator_destroy

validating @0x842e00: . NS: in dlvfetched: ncache nxrrset

validating @0x842e00: . NS: DLV not found

validating @0x842e00: . NS: marking as answer

validator @0x842e00: dns_validator_destroy

validating @0x842e00: example.net DNSKEY: starting

validating @0x842e00: example.net DNSKEY: looking for DLV

validating @0x842e00: example.net DNSKEY: plain DNSSEC returns unsecure (.): looking for DLV

validating @0x842e00: example.net DNSKEY: looking for DLV example.net.dlv-registry.org

validating @0x842e00: example.net DNSKEY: DLV example.net found

validating @0x842e00: example.net DNSKEY: dlv_validator_start

validating @0x842e00: example.net DNSKEY: restarting using DLV

validating @0x842e00: example.net DNSKEY: attempting positive response validation

validating @0x842e00: example.net DNSKEY: dlv_validatezonekey

validating @0x842e00: example.net DNSKEY: Found matching DLV record: checking for signature

validating @0x842e00: example.net DNSKEY: verify rdataset (keyid=17000): RRSIG failed to verify

validating @0x842e00: example.net DNSKEY: verify rdataset (keyid=49656): success

validating @0x842e00: example.net DNSKEY: marking as secure

validator @0x842e00: dns_validator_destroy

validating @0x84b600: example.net SOA: in fetch_callback_validator

validating @0x84b600: example.net SOA: keyset with trust 7

validating @0x84b600: example.net SOA: resuming validate

validating @0x84b600: example.net SOA: verify rdataset (keyid=17000): success

validating @0x84b600: example.net SOA: marking as secure

validator @0x84b600: dns_validator_destroy

When using lookaside validation assessing the log output in case of corrupted
zone data is a challenge. Below is the output of the validator when it tries to
figure out if a query that returns a corrupted result is valid or not. The conclusion
is reached in the last few lines.

validating @0x842e00: . NS: starting

validating @0x842e00: . NS: looking for DLV

validating @0x842e00: . NS: plain DNSSEC returns unsecure (.): looking for DLV

validating @0x842e00: . NS: looking for DLV dlv-registry.org

validating @0x842e00: . NS: DLV lookup: wait

validating @0x84b600: corrupt.example.net A: starting

validating @0x84b600: corrupt.example.net A: looking for DLV

validating @0x84b600: corrupt.example.net A: plain DNSSEC returns unsecure (.): looking for DLV

validating @0x84b600: corrupt.example.net A: looking for DLV corrupt.example.net.dlv-registry.org

validating @0x84b600: corrupt.example.net A: DNS_R_COVERINGNSEC

validating @0x84b600: corrupt.example.net A: covering nsec: trust 1

validating @0x84b600: corrupt.example.net A: DLV lookup: wait

validating @0x84ee00: dlv-registry.org DLV: starting

validating @0x84ee00: dlv-registry.org DLV: attempting negative response validation

validating @0x83ae00: dlv-registry.org SOA: starting

validating @0x83ae00: dlv-registry.org SOA: attempting positive response validation

validating @0x83b600: corrupt.example.net.dlv-registry.org DLV: starting

validating @0x83b600: corrupt.example.net.dlv-registry.org DLV: attempting negative response validation

validating @0x850600: dlv-registry.org SOA: starting

validating @0x850600: dlv-registry.org SOA: attempting positive response validation

validating @0x850e00: dlv-registry.org DNSKEY: starting

15

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

validating @0x850e00: dlv-registry.org DNSKEY: attempting positive response validation

validating @0x850e00: dlv-registry.org DNSKEY: verify rdataset (keyid=8916): success

validating @0x850e00: dlv-registry.org DNSKEY: signed by trusted key; marking as secure

validator @0x850e00: dns_validator_destroy

validating @0x83ae00: dlv-registry.org SOA: in fetch_callback_validator

validating @0x83ae00: dlv-registry.org SOA: keyset with trust 7

validating @0x83ae00: dlv-registry.org SOA: resuming validate

validating @0x83ae00: dlv-registry.org SOA: verify rdataset (keyid=27467): success

validating @0x83ae00: dlv-registry.org SOA: marking as secure

validator @0x83ae00: dns_validator_destroy

validating @0x84ee00: dlv-registry.org DLV: in authvalidated

validating @0x84ee00: dlv-registry.org DLV: resuming nsecvalidate

validating @0x850600: dlv-registry.org SOA: in fetch_callback_validator

validating @0x850600: dlv-registry.org SOA: keyset with trust 7

validating @0x850600: dlv-registry.org SOA: resuming validate

validating @0x850600: dlv-registry.org SOA: verify rdataset (keyid=27467): success

validating @0x850600: dlv-registry.org SOA: marking as secure

validator @0x850600: dns_validator_destroy

validating @0x83b600: corrupt.example.net.dlv-registry.org DLV: in authvalidated

validating @0x83b600: corrupt.example.net.dlv-registry.org DLV: resuming nsecvalidate

validating @0x850600: example.net.dlv-registry.org NSEC: starting

validating @0x850600: example.net.dlv-registry.org NSEC: attempting positive response validation

validating @0x850600: example.net.dlv-registry.org NSEC: keyset with trust 7

validating @0x850600: example.net.dlv-registry.org NSEC: verify rdataset (keyid=27467): success

validating @0x850600: example.net.dlv-registry.org NSEC: marking as secure

validator @0x850600: dns_validator_destroy

validating @0x83b600: corrupt.example.net.dlv-registry.org DLV: in authvalidated

validating @0x83b600: corrupt.example.net.dlv-registry.org DLV: looking for relevant nsec

validating @0x83b600: corrupt.example.net.dlv-registry.org DLV: nsec range ok

validating @0x83b600: corrupt.example.net.dlv-registry.org DLV: resuming nsecvalidate

validating @0x83b600: corrupt.example.net.dlv-registry.org DLV: in checkwildcard: *.example.net.dlv-registry.org

validating @0x83b600: corrupt.example.net.dlv-registry.org DLV: looking for relevant nsec

validating @0x83b600: corrupt.example.net.dlv-registry.org DLV: nsec range ok

validating @0x83b600: corrupt.example.net.dlv-registry.org DLV: nonexistence proof(s) found

validator @0x83b600: dns_validator_destroy

validating @0x83ae00: dlv-registry.org NSEC: starting

validating @0x83ae00: dlv-registry.org NSEC: attempting positive response validation

validating @0x83ae00: dlv-registry.org NSEC: keyset with trust 7

validating @0x83ae00: dlv-registry.org NSEC: verify rdataset (keyid=27467): success

validating @0x83ae00: dlv-registry.org NSEC: marking as secure

validator @0x83ae00: dns_validator_destroy

validating @0x84ee00: dlv-registry.org DLV: in authvalidated

validating @0x84ee00: dlv-registry.org DLV: looking for relevant nsec

validating @0x84ee00: dlv-registry.org DLV: nsec proves name exists (owner) data=0

validating @0x84ee00: dlv-registry.org DLV: resuming nsecvalidate

validating @0x84ee00: dlv-registry.org DLV: nonexistence proof(s) found

validator @0x84ee00: dns_validator_destroy

validating @0x84b600: corrupt.example.net A: in dlvfetched: ncache nxdomain

validating @0x84b600: corrupt.example.net A: looking for DLV example.net.dlv-registry.org

validating @0x84b600: corrupt.example.net A: DLV lookup: wait

validating @0x842e00: . NS: in dlvfetched: ncache nxrrset

validating @0x842e00: . NS: DLV not found

validating @0x842e00: . NS: marking as answer

validator @0x842e00: dns_validator_destroy

validating @0x842e00: example.net.dlv-registry.org DLV: starting

validating @0x842e00: example.net.dlv-registry.org DLV: attempting positive response validation

validating @0x842e00: example.net.dlv-registry.org DLV: keyset with trust 7

validating @0x842e00: example.net.dlv-registry.org DLV: verify rdataset (keyid=27467): success

validating @0x842e00: example.net.dlv-registry.org DLV: marking as secure

validator @0x842e00: dns_validator_destroy

validating @0x84b600: corrupt.example.net A: in dlvfetched: success

validating @0x84b600: corrupt.example.net A: DLV example.net found

validating @0x84b600: corrupt.example.net A: dlv_validator_start

validating @0x84b600: corrupt.example.net A: restarting using DLV

validating @0x84b600: corrupt.example.net A: attempting positive response validation

16

1 CONFIGURING A RECURSIVE NAME SERVER TO VALIDATE ANSWERS

validating @0x842e00: example.net DNSKEY: starting

validating @0x842e00: example.net DNSKEY: looking for DLV

validating @0x842e00: example.net DNSKEY: plain DNSSEC returns unsecure (.): looking for DLV

validating @0x842e00: example.net DNSKEY: looking for DLV example.net.dlv-registry.org

validating @0x842e00: example.net DNSKEY: DLV example.net found

validating @0x842e00: example.net DNSKEY: dlv_validator_start

validating @0x842e00: example.net DNSKEY: restarting using DLV

validating @0x842e00: example.net DNSKEY: attempting positive response validation

validating @0x842e00: example.net DNSKEY: dlv_validatezonekey

validating @0x842e00: example.net DNSKEY: Found matching DLV record: checking for signature

validating @0x842e00: example.net DNSKEY: verify rdataset (keyid=17000): RRSIG failed to verify

validating @0x842e00: example.net DNSKEY: verify rdataset (keyid=49656): success

validating @0x842e00: example.net DNSKEY: marking as secure

validator @0x842e00: dns_validator_destroy

validating @0x84b600: corrupt.example.net A: in fetch_callback_validator

validating @0x84b600: corrupt.example.net A: keyset with trust 7

validating @0x84b600: corrupt.example.net A: resuming validate

validating @0x84b600: corrupt.example.net A: verify rdataset (keyid=17000): RRSIG failed to verify

validating @0x84b600: corrupt.example.net A: failed to verify rdataset

validating @0x84b600: corrupt.example.net A: verify failure: RRSIG failed to verify

validating @0x84b600: corrupt.example.net A: no valid signature found

validator @0x84b600: dns_validator_destroy

1.6 Some Troubleshooting Tips

Suppose that you have configured a trust anchor and you are experiencing prob-
lems. For instance, your nameserver returns “SERVFAIL” for particular queries.
Well, “SERVFAIL” is the default return code that a validating nameserver re-
turns when it flags data as being bogus. Bogus data can be caused by two things.
Either you are under attack or you experiencing a configuration error either by
the operator of one of the zones in the chain of trust or by the operator of the
validating recursive nameserver.

In addition to looking at the logs there are a number of tools at your disposal
(see III). To assess if problems occur because of misconfiguration, or bugs, in
you validating nameserver, or because of problems with the signed zones you will
need a troubleshooting strategy.

One of the approaches you could take is to first use drill (see 6) or dig (see
7) to perform a ’sigchase’ or a ’trace’ with a key copied to your local file system,
circumventing you validating recursive nameserver. In that way you will be able
to check if the chain of trust can actually be built from the data. Make sure you
use the correct trust-anchor when tracing data.

When you have verified that the chain of trust can be build from the data in
the DNS it is time to troubleshoot the validating nameserver. This is easy when
you have access to the log files but may be more troublesome if you don’t. You
could use dig to query the validating nameservers with and without the +cd flag.
That flag sets a bit in the query that instructs the nameserver not to perform
validation. When the individual pieces in the chain of trust (drill returned
those when using the trace option) you may be able to find inconsistencies that
indicate that an expired trust anchor has been configured. You start by querying
the DNSKEY RRset for which you assume there is a trust-anchor considered and
work your way down. Or, alternatively, you query for the data you were looking
for, use the data in the RRSIG RR to find for which DNSKEY RR to query,

17

2 SECURING A DNS ZONE

then query for a DS RR at the same name and work your way up (similar to the
’sigchase’ in drill).

While troubleshooting there are a number of failures that are easily intro-
duced. Take the following example.

In his ISP column [8, 7, 6], Geoff Huston documented his experiences as an
early deployer. He blindly configured a trust-anchor for the “nlnetlabs.nl” zone.
While this zone was signed it was done in an experimental setup whereby not all
servers for the zone were configured with the same version of the protocol. In this
case one of the servers would not provide RRSIGs with the answer, something
which may give rise to re-occurring but hard to predict failures.

There are two things to learn from this: Never blindly configure trust anchors
in validating resolvers and make sure that when you serve zones all your servers
conform to the DNSSEC protocol specification.

Another failure is that one of the RRsets in the chain of trust has expired
signatures. Check this by looking at the date fields in the RRSIG RRs.

More problematic to find may be a rollover, where DNSKEY RRs or RRSIG
RRs have been removed to early so that there is an inconsistency between data
in cache and data that needs to be validated (also see section 4). Using the +cd
to with dig and looking at the TTLs might help to distinguish if you are trying
to validate RRSIGs for which there are no DNSKEYs available (or vice versa).

2 Securing a DNS zone

2.1 Introduction

If a zone has been signed and its key has been configured in a validating recursive
name server we usually refer to it as being an ”island of security”. It apparently
does not have a secured parent and stands alone in the sea of other unsecured do-
mains. Usually creating an ”island of security” is the first step to becoming part
of the secure DNS. The ”island of security” will remain ”insecure” for resolvers
that have no trust anchor configured for the domain.

If a zone owner decides to create ”an island of security” she will sign her zones
and distribute the ”secure entry points” to the system administrators that want
to validate her zone data. Once the island of security has been set up the island
can become part of the secure tree by exchanging the ”secure entry point” with
the parent.

After creation of the key-pairs used for signing and validation we want to
sign the zone data for our own organisation (e.g. example.net.) and configure
the caching forwarders on our organisations network to validate data against the
public key of our organisation.

In the text below, we assume that your organisation’s domain names are
maintained in one zone. If domain name administration is delegated to sub-
zones, see section Chapter 3, “Delegating of signing authority; becoming globally
secure”.

Signing the zone data is the task of the zone administrator, configuring the
caching forwarder is a task of system administrators.

18

2 SECURING A DNS ZONE

The examples are based on the example zone in section Figure 7.

2.2 Configuring authoritative servers

All the authoritative servers will need to be configured to deal with the DNSSEC
protocol. How this is done for BIND is explained in AppendixA. The essential
steps are compiling bind with openssl and enabling dnssec through the use of the
dnssec-enable yes; directive in the options section of named.conf.

That is all there is to it.

2.3 Creating key pairs

2.3.1 Key Maintenance Policy

Before generating keys, you will need to think about your key maintenance policy.
Such policy should address

• What will be the sizes of your keys?
• Will you separate the key- and zone-signing keys functionality?
• How often will you roll the keys?
• How will system administrators that intend to use your zone as a trust

anchor get hold of the appropriate public key and what mechanism will
you provide to enable them to validate the authenticity of your public key?
• How will you signal a key rollover or how can you make sure that all inter-

ested parties are aware of a rollover?

Some of these issues may be easy to address. For example, your organisation
may have established mechanisms to distribute the public keys, there may be
obvious ways to publish an upcoming rollover such as the possibility of publishing
the event in a corporate newspaper. Alternatively, it may be possible to notify all
relevant parties by mail when a corporate X.509 hierarchy is available for e-mail
validation.

2.3.1.1 Key- and zone-signing keys. The author thinks it is good practise to
use zone-signing keys and key-signing keys (also see Chapter 4, “Rolling keys”).
The key-signing keys are usually the first keys from your zone that are used to
build a chain of authority to the data that needs to be validated. Therefore,
these keys are often called a secure entry point key (or SEP key). These SEP
keys are the ones that you should exchange with your parents or that validating
resolvers configure as their trust anchors.

Throughout this document we assume that you use separate key- and zone-
signing keys and that the key-signing keys are exclusively used as secure entry
point keys and can be identified by the SEP[10] bit in the flag field; the flag field
is odd.

2.3.2 Creating the keys

19

2 SECURING A DNS ZONE

Usage:
dnssec-keygen -a alg -b bits -n type [options] name

Version: 9.4.1-P1
Required options:

-a algorithm: RSA | RSAMD5 | DH | DSA | RSASHA1 | HMAC-MD5 | HMAC-SHA1 | HMAC-SHA224 | HMAC-SHA256 | HMAC-SHA384 | HMAC-SHA512
-b key size, in bits:

RSAMD5: [512..4096]
RSASHA1: [512..4096]
DH: [128..4096]
DSA: [512..1024] and divisible by 64
HMAC-MD5: [1..512]
HMAC-SHA1: [1..160]
HMAC-SHA224: [1..224]
HMAC-SHA256: [1..256]
HMAC-SHA384: [1..384]
HMAC-SHA512: [1..512]

-n nametype: ZONE | HOST | ENTITY | USER | OTHER
name: owner of the key

Other options:
-c <class> (default: IN)
-d <digest bits> (0 => max, default)
-e use large exponent (RSAMD5/RSASHA1 only)
-f keyflag: KSK
-g <generator> use specified generator (DH only)
-t <type>: AUTHCONF | NOAUTHCONF | NOAUTH | NOCONF (default: AUTHCONF)
-p <protocol>: default: 3 [dnssec]
-s <strength> strength value this key signs DNS records with (default: 0)
-r <randomdev>: a file containing random data
-v <verbose level>
-k : generate a TYPE=KEY key

Output:
K<name>+<alg>+<id>.key, K<name>+<alg>+<id>.private

Figure 6: dnssec-keygen arguments

dnssec-keygen is the tool that we use to generate key pairs. The arguments
that we have to provide dnssec-keygen are shown in Figure 6.

The output can be found in two files. The name of the files contain relevant
information:

Kdomain name+algorithm id+key id.extension

The domain name is the name specified on the command line. It is used by
other BIND DNSSEC tools, if you use a different name from the domain name,
you might confuse those tools. The algorithm id identifies the algorithm used:
1 for RSAMD5, 3 for DSA, 5 for RSASHA1 and 54 for HMAC-MD5 (TSIG

20

2 SECURING A DNS ZONE

only). The key id is an identifier for the key material. This key id is used by
the RRSIG Resource Record. The extension is either key or private, the first
is the public key, the second is the private key.

We create an RSASHA1 zone-signing key pair for example.net:

dnssec-keygen -r/dev/random -a RSASHA1 -b 1024 -n ZONE example.net
Kexample.net.+005+17000

Because of the considerations in Section 2.3.1 you will also need to create
SEP keys. Create keys with the SEP bit set by specifying the -f KSK flag with
dnssec-keygen.

dnssec-keygen -r/dev/random -f KSK -a RSASHA1 -b 1280 -n ZONE example.net
Kexample.net.+005+49656

Lets have a look at the content of these files7

cat Kexample.net.+005+17000.key
example.net. IN DNSKEY 256 3 5 (

AQPI4+0M1V055RS2Hqv+8w8V20Dh+SQmFzHQtZMuzLH3UxWE0GmG5Gfj
ijandJeAZTKLpERXB6RfHTHGG8lD3IO1azWN6DiVFEVzgr0otAdDonfY
+oEsRw==)

The public key (.key extension) is exactly as it appears in your zone file.
Note, that the TTL value is not specified. This key has a ”flag” value of 256.
Since this value is an even number, the key is not marked as a SEP key and
should be used for zone-signing.

The private key (.private extension) contains all the parameters that make
an RSASHA1 private key. The private key of a RSA key contains different
parameters to DSA. Here is the private key (with base64 material truncated):

cat Kexample.net.+005+17000.private

Private-key-format: v1.2

Algorithm: 5 (RSASHA1)

Modulus: yOPtDNVdOeUUth6r/vMPFdtA4fkkJhcx0LWTLsyx91MVhNBphu...

PublicExponent: Aw==

PrivateExponent: he1Iszjo0UNjJBRyqfdfY+eAlqYYGWTL4HkMyd3L+j...

Prime1: +X0kNW1JrepBnVw5o9fDUyWAT5zqxKt0YR4vJZ19991tLZAmdO4...

Prime2: ziIX5qfpZGBuzfd847TqtDfYcwv5UfUrPAIa/11g3leUUNERmsB...

Exponent1: plNtePOGc/GBE5LRF+Us4hkANRNHLcei62l0w75T+pOeHmAZ...

Exponent2: iWwP7xqbmEBJ3qT97SNHIs/logf7i/jHfVa8qj5AlDpi4Ith...

Coefficient: rmmgD9P7/ywQJ4F0epdGqOUoQZmqrPQsraDTD8vkU1wLju...

7 We slightly edited the output for readability. We printed the base64 material over several
lines and introduced the brackets so that this is a legal multi-line representation of a RR.

21

2 SECURING A DNS ZONE

This private key should be kept secure8 i.e. the file permissions should be set
so that the zone administrator will be able to access them when a zone needs to
be signed. The BIND tools will, by default,9 look for the keys in the directory
where signing is performed (see Section 2.4), that might not be the most secure
place on your OS.

2.4 Zone-signing

When you create key pairs, you should include them in your zone file. Refer to
the example in Figure7, where we use the $include directive to include the keys.
We increase the serial number in the SOA record before signing.

In the example below we will use the RSASHA1 type keys for zone and key-
signing keys.

Once the key is included in the zone file we are ready to sign the zone using
the dnssec-signzone tool (see Figure 8 for all the arguments). We use the -o
flag to specify the origin of the zone; by default the origin is deduced from the
zone file name.

With the ’-k key name’ we specify which key is to be used as the key-signing
key. That key will only sign the DNSKEY RR set in the apex of the zone. The
keys that come as arguments at the end of the command are used to sign all
the RR data for which the zone is authoritative. If you do not specify the keys,
BIND will use the ones for which the public keys are included in the zone and
use the SEP flag to distinguish between key- and zone-signing keys.

In practise you would not want to rely on the default, since in key rollover
scenarios you will have a public key in your zone file but you would not want to
use that for zone-signing (in order to avoid double signatures and therefore longer
signature generation times and more resource consumption on your name server).
Below is the command issued to sign a zone with the 49656 key as key-signing
key and the 17000 key as zone-signing key.

/usr/local/sbin/dnssec-signzone \
-o example.net \
-k Kexample.net.+005+49656 \
db.example.net \
Kexample.net.+005+17000.key

The signed zone file is reproduced in figure 2.4 . Note that the apex DNSKEY
RRset is the only RRset with two signatures, made with the zone- and key-signing
keys. The other RRsets are only signed with the zone-signing keys.

The signing process completed the following:
8 At the RIPE NCC we are working on a dedicated signing server that has SSH based

access control. Based on which key is used to login, a dedicated shell is opened; A zone
maintenance shell allows signing of zones; A key maintenance shell for key maintenance. Only
system administrators can access the key-material itself. A beta version of this tool is available
on RIPE NCC’s website <http:www.ripe.net/disi/dnssec_maint_tool/>.

9 It is possible to fully specify the path to the keys.

22

http:www.ripe.net/disi/dnssec_maint_tool/

2 SECURING A DNS ZONE

; example.net zone
;
$TTL 100
$ORIGIN example.net.
@ 100 IN SOA ns.example.net. (

olaf.nlnetlabs.nl.
2002050501
100
200
604800
100
)

NS ns.example.net.
ns.example.net. A 192.168.2.203

a A 192.168.2.1
b A 192.168.2.2

* A 192.168.2.10
b.a A 192.168.2.11

; These are the keys that need to be publised in the DNSKEY RRset
;
$include Kexample.net.+005+17000.key ; ZSK
$include Kexample.net.+005+49656.key ; KSK

Figure 7: example.net example zone

• Sorted the zone in ’canonical’ order10.
• Inserted NSEC records for every label.
• Added the key-id as a comment to each DNSKEY-record.
• Signed the DNSKEY RR set with two keys; the key-signing key and the

zone-signing key.
• Signed the other RRs with the zone-signing key.
• It created two files, dsset-example.net and keyset-example.net. These

two files are relevant when building a chain of trust. Per default the files
are created in the ’current directory’ i.e. the directory in which you ran
thednssec-signzone command, but when specifying the -d, with its di-
rectory, then the files end up there.

The signatures were created with a default life time of 30 days from the
moment of signing. Once signatures have expired data can not be validated and

10 A specific ordering as defined by the DNSSEC protocol.

23

2 SECURING A DNS ZONE

your zone will marked ’bogus’. Therefore you will have to re-sign your zone
within 30 days. Zone re-signing is discussed below.

The signed zone is stored in db.example.net.signed, make sure you have
configured named to use this file to serve the zones from.

24

2 SECURING A DNS ZONE

Usage:
dnssec-signzone [options] zonefile [keys]

Version: 9.4.1-P1
Options: (default value in parenthesis)

-c class (IN)
-d directory

directory to find keyset files (.)
-g: generate DS records from keyset files
-s [YYYYMMDDHHMMSS|+offset]:

RRSIG start time - absolute|offset (now - 1 hour)
-e [YYYYMMDDHHMMSS|+offset|"now"+offset]:

RRSIG end time - absolute|from start|from now (now + 30 days)
-i interval:

cycle interval - resign if < interval from end ((end-start)/4)
-j jitter:

randomize signature end time up to jitter seconds
-v debuglevel (0)
-o origin:

zone origin (name of zonefile)
-f outfile:

file the signed zone is written in (zonefile + .signed)
-I format:

file format of input zonefile (text)
-O format:

file format of signed zone file (text)
-N format:

soa serial format of signed zone file (keep)
-r randomdev:

a file containing random data
-a: verify generated signatures
-p: use pseudorandom data (faster but less secure)
-t: print statistics
-n ncpus (number of cpus present)
-k key_signing_key
-l lookasidezone
-z: ignore KSK flag in DNSKEYs

Signing Keys: (default: all zone keys that have private keys)
keyfile (Kname+alg+tag)

Figure 8: dnssec-signzone arguments

25

2 SECURING A DNS ZONE

; File written on Fri May 30 15:12:19 2008
; dnssec_signzone version 9.4.1-P1
example.net. 100 IN SOA ns.example.net. olaf.nlnetlabs.nl. (

2002050501 ; serial
100 ; refresh (1 minute 40 seconds)
200 ; retry (3 minutes 20 seconds)
604800 ; expire (1 week)
100 ; minimum (1 minute 40 seconds)
)

100 RRSIG SOA 5 2 100 20080629121219 (
20080530121219 17000 example.net.
hrxLGVU9QhJ1ADWSqW6D3OYLVKNsssh0MPIl
NeJoguT1Kn0DGcrocFaOyXpNEaUdeA9JizxX
glMxd0VA2ifD2HKuYjmxdTFNgPa1ZB8eUUmj
Rgy+Ha4BgYsP0ygr3kDDeAy5RpX68ogUr1TL
XuRycIQrKfGRoN0i6sIdfITK8B4=)

100 NS ns.example.net.
100 RRSIG NS 5 2 100 20080629121219 (

20080530121219 17000 example.net.
K9yHJKQFr4XRQtpwt6vgEIuCQVno+YcoTf2O
zLiXLIscHvC+g5agfIKCJ+1Aq92Lwj3i5ojL
NBrFvbKrRaCQsIE88JEKhvwtFzy9UoGvAJyt
/hsf1CoXTkAzJlQHOF8+FZnr4TWYIKH11j5y
rAVDwkfvBZAjb/Hy4AqJnyLd1DI=)

100 NSEC *.example.net. NS SOA RRSIG NSEC DNSKEY
100 RRSIG NSEC 5 2 100 20080629121219 (

20080530121219 17000 example.net.
V5pao0rITNZbJbLYsMYSu4YJECyVMEWPL9wS
wDBPb14qenEreJ1ajoN2n0sbxIGoCKF1VuPx
f4jU+EYJ1/bWI3DWgbJPFafffVfFjJ8hB/Ky
mUl9to6sb/IhlLbEFWuXdgNFnZMuxQdtCcq1
lAmsRtbCrLoaWjN3WZXJhoNYarM=)

100 DNSKEY 256 3 5 (
AQPI4+0M1V055RS2Hqv+8w8V20Dh+SQmFzHQ
tZMuzLH3UxWE0GmG5GfjijandJeAZTKLpERX
B6RfHTHGG8lD3IO1azWN6DiVFEVzgr0otAdD
onfYF8gUT03ZnRcXlkJk41h12NOfq6rkODaF
nfMHCppI3WZ/MJqe+9hLJtis+oEsRw==
) ; key id = 17000

100 DNSKEY 257 3 5 (
AQOzgs4qea+ImJ1OCworkabHqFnvPKybVT7b
nDIkJ2HvXWslbwNWJ66Ox3N6ftpCTc9wWBMw
5+xOh7ilTwFPruMa2gURwEywZaMG9ipILOXm
KO4a5I+8R2QTH4BM0WaIKnv5jCHose/l9LL3
Y8MApsjP6gOWNM8b9aVTjBFnf0xEF7sOSBBB
E4G2/og5Fr+H8DYaotqgJ3nrzRfYA0gSXwwb
) ; key id = 49656

100 RRSIG DNSKEY 5 2 100 20080629121219 (

Figure 9: Example of a signed zone file

26

2 SECURING A DNS ZONE

20080530121219 17000 example.net.
msPHGv9fT/650/lsWLkhC+BNLDqWCOZsS7q2
jhumNIRz3pgFxjiSmprQc5KxPO0zjatKsLY6
A8DOU7MYhBCh1boTnO6wcIdO9O2nb3seEQCp
Dn9qhHt1b5JXJCia4Ebrkwk4Hr+NVPuRxlJy
p1Wb6shrjzWaH7ADZJ3rd8bl6FU=)

100 RRSIG DNSKEY 5 2 100 20080629121219 (
20080530121219 49656 example.net.
BuzG1WD/dOi8dgKXtRc69zsjWbcdmvbxiohn
qwgTfiUpSjtQ10mpzYalS4kh+dsijYBNAAy4
30WJbvF+RrjP6HlFkaGzWHjQxNFJcSSM9XTO
ollQ6Q+gMvRrD36EmCc90E8FnrOheumKCRsC
hnwqHEVN4BPIf1+hlSCeTWd4sbIp1/PK3sWA
CyAPtuys3ytN5OMPKkBHLxIbGZM4Y4VN9A==)

*.example.net. 100 IN A 192.168.2.10
100 RRSIG A 5 2 100 20080629121219 (

20080530121219 17000 example.net.
YomDxoFN2WbDaDhTBFjxe/EcRhjkrmL1fM0a
bOBz+QBFwmzNanOHV5aeajQFOC7wft6LTscX
Qc19cztbmbzqdftz2NCOY2LOCLdwCdeqcPD9
Vbql9IBvHP6TkEfZNiW7c4RFHcH4bwBnDcXm
J+8zS7X2dauOQwiE1i93g9jLn/w=)

100 NSEC a.example.net. A RRSIG NSEC
100 RRSIG NSEC 5 2 100 20080629121219 (

20080530121219 17000 example.net.
ZMAbDPx8S5Xw9t3RgXB3yp+qn/+8SZuaws5D
Kk4x2pnXjvMlIWuzniCDpqn9ElSxYl61qPJ1
R5g2jwf4NTcDtkeG5saSny8BGAE7BQAhsz51
1nyx7bPpVnOS09In/01Albfh/341NFDTEzRf
MRaoH7MsR4nb9aYrNIE9WGMaS2E=)

a.example.net. 100 IN A 192.168.2.1
100 RRSIG A 5 3 100 20080629121219 (

20080530121219 17000 example.net.
nhZEpPSaCEL55U5omT7byFAbKQUI9HLXqf2t
gzii14/vxGel8nkfqirBlc1zF4HNVnhYlEd9
5Ih310uQ55ukt98Nnv10L4azFcKZ9RILAZNz
jKPo75LACmFmXA2uatgPZlN3fOuvs/qJ40rw
QxL56IMkcZ/F9NX7Dd4qinvfic8=)

100 NSEC b.a.example.net. A RRSIG NSEC
100 RRSIG NSEC 5 3 100 20080629121219 (

20080530121219 17000 example.net.
jHi7Lq795GHDvEHzOxOihb6pPBBfUceAKpiR
WWqSwBal3uxf37DcA3hNf24OUn0FBeYM9tBO
WpVa+vzhRFLtr0evblzVnZs4jN6eIxovsE7C
LDv7Vlw2Xc+LorB53WHjldjoocZzuHadUyaq
15ePANgr8pDvU5KBSCZ3Ry0Oo38=)

b.a.example.net. 100 IN A 192.168.2.11
100 RRSIG A 5 4 100 20080629121219 (

20080530121219 17000 example.net.
OYA5JUj/nhlzrwTj4YODRKHl2V7R9JMz7mIF

Figure 9: continued

27

2 SECURING A DNS ZONE

U2E5EJp63PgI3VpkM97kF0VObgf8Rr1KuIJP
rzc+jcytyRMKOzuk4qscd6LM1Nb0odalOxpv
iY1RpFJkrpY9u9/Bubi66ajRtko=)

100 NSEC b.example.net. A RRSIG NSEC
100 RRSIG NSEC 5 4 100 20080629121219 (

20080530121219 17000 example.net.
Xy5kKE+pcV4v6CjYkTtWNrZEcmqdSQvP1Jtg
Z6mLYYQEep+BfYr9DY4K8E5e+Vr/MNDafO82
ZEuXoOvS4+jSL1XHFT+YfMzPFWndchzwAoVq
tNdF5Tk0j4sSPr4Ra9tVSKANs7W4BnWu6wDg
eEyMoNo4KOYGTkkxWzyvKLaEK+4=)

b.example.net. 100 IN A 192.168.2.2
100 RRSIG A 5 3 100 20080629121219 (

20080530121219 17000 example.net.
g80dnqShMXVehdhKg07lpeJcNruhhx7o63fg
FwGmNr3wXWvQO4om4FQRlWHhwlNMOCYvy3l9
7LSdG78K8D+NWRMosYDFHpuEfKjsguQKZ5VD
W6QokZBQYyKX2KmJSBgK6yQXwYnGg5Gh2b2o
emhBLOrSOb6vx/M/jR8zH3ElQos=)

100 NSEC ns.example.net. A RRSIG NSEC
100 RRSIG NSEC 5 3 100 20080629121219 (

20080530121219 17000 example.net.
frClfZUGPe2lqUPdzW9lehOUR7+rX+kcaEi3
DpdccKvXlcG5LguEqSSFsqDsu6x+MMV36stY
N+h3w/iB4iVHU1PQ1klfrmipWyoKj/8Y5sdg
13NYsxqxcFKUKHuttCkQBqiwnm5ig3UL6xv7
E5gnCHEkNtO+F8i58ZgU0dEQHBU=)

ns.example.net. 100 IN A 192.168.2.203
100 RRSIG A 5 3 100 20080629121219 (

20080530121219 17000 example.net.
VYlDoyYLdw8WkUlyLGUuW3f5gRKqVlWPulI3
+/YW6mtOQCkHeIyJydid38RnGfbdCwH2kghF
ZUszSxeOFIRL/LYiz7YNmBfqRdP/FO5PhWlT
GovGpndu5JAidu9/DYpvUa9h6pqJxwt2OppU
LI6dle9A/RkjiYtiDvAmxWLbQQw=)

100 NSEC example.net. A RRSIG NSEC
100 RRSIG NSEC 5 3 100 20080629121219 (

20080530121219 17000 example.net.
gTYgHSniuaxdk7mn1gApLSRCAq5vHrNrzdts
f/dZsO9GXVobjV54ZW2vSWVOLm4rzaBJF9rV
GlkyRX3vfls1Cxu8caMy/MxtPFdfShH6yWMX
0H5wUb1ZdBjsqediD4zRXLNjFxmllFz0laCs
vOhBOYDWMHj+Sl+77uN092usWiw=)

Figure 9: continued

28

2 SECURING A DNS ZONE

2.5 Caching forwarder configuration

Now the DNS servers publish signed data, we need to configure the ’clients’ to
validate it. The clients in this context are recursive name servers. Just configure
your recursive name server with the public SEP key generated for the zone. This
is described in Section 1.3 (above), also see Figure 3.

2.6 Zone Re-Signing

When the signatures in your zone are due to expire or if you have added new
records to your zone, you will have to re-sign your zone. There are two ways
to re-sign your zone data. You may choose either option depending on levels of
automation, the zone size and the frequency with RRSIG RRs are generated.

• You can regenerate the signed zone from the unsigned zone file. The signer
will need to sort the zone again, generate all the NSEC records and generate
all RRSIG records.
If you generate your zone file from a back-end database this is probably the
preferred method.
• You can add the new records to the already signed zone file and then run

that zone file through the signer. The BIND signer will insert new records
and associate NSECs in the already sorted zone file and will only sign new
records and records for which the signatures are reaching the end of their
validity period.

You should build tools to maintain your signed zones e.g.: using cron, perl
and make. (also see Appendix D)

2.7 Troubleshooting Signed Zones

You can check the format of your named.conf using the named-checkconf pro-
gram. The named-checkzone program can be used to check zone files. These
programs use the same routines to parse the configuration and zone files as named
but only check syntax.

One can use dig and a name server configured with a trusted-key to validate
ones setup. If data cannot be cryptographically validated, the forwarder will
return with a SERVFAIL status. You can test this by intentionally corrupting
a resource record in the signed zone file. This is typical output of dig when
querying for corrupted data 11:

; <<>> DiG 9.4.1-P1 <<>> @192.168.2.204 corrupt.example.net A +dnssec +multiline +retry=1

; (1 server found)

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 16481

;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

11 We corrupted the data by modifying rdata in the signed zone-file to generate this example

29

2 SECURING A DNS ZONE

; EDNS: version: 0, flags: do; udp: 4096

;; QUESTION SECTION:

;corrupt.example.net. IN A

;; Query time: 12 msec

;; SERVER: 192.168.2.204#53(192.168.2.204)

;; WHEN: Fri May 30 15:17:02 2008

;; MSG SIZE rcvd: 48

Note that a caching forwarder will not do cryptographic validation of the
zones for which it is authoritative. Therefore, if your caching forwarder is a
primary or secondary server for a particular zone you will always get an answer
as it is assumed that data from disk is secure.

Further troubleshooting needs to be done on a a server configured as a val-
idating recursive name server. Below is an example of the log output of the
validating nameserver when we queried for corrupted data.
validating @0x846e00: corrupt.example.net A: starting

validating @0x846e00: corrupt.example.net A: attempting positive response validation

validating @0x848600: example.net DNSKEY: starting

validating @0x848600: example.net DNSKEY: attempting positive response validation

validating @0x848600: example.net DNSKEY: verify rdataset (keyid=49656): success

validating @0x848600: example.net DNSKEY: signed by trusted key; marking as secure

validator @0x848600: dns_validator_destroy

validating @0x846e00: corrupt.example.net A: in fetch_callback_validator

validating @0x846e00: corrupt.example.net A: keyset with trust 7

validating @0x846e00: corrupt.example.net A: resuming validate

validating @0x846e00: corrupt.example.net A: verify rdataset (keyid=17000): RRSIG failed to verify

validating @0x846e00: corrupt.example.net A: failed to verify rdataset

validating @0x846e00: corrupt.example.net A: verify failure: RRSIG failed to verify

validating @0x846e00: corrupt.example.net A: no valid signature found

validator @0x846e00: dns_validator_destroy

(This output was generated by using the dnssec category to a logging channel
with severity debug 3; configured.)

Similarly one can use the logs produced by unbound for troubleshooting.
When setting verbosity: 3 then the log files are very verbose but also tell us
precisely what went wrong. Like in the excert of a log file below.
info: resolving (init part 3): <example.net. DNSKEY

info: processQueryTargets: <example.net. DNSKEY

info: sending query: <example.net. DNSKEY

debug: sending to target: <example.net.>

debug: cache memory msg=198044 rrset=203112 infra=7516

debug: iterator[module 1] operate: extstate:module_wait_reply

info: iterator operate: query <example.net. DNSKEY

info: response for <example.net. DNSKEY

info: reply from <example.net.>

info: query response was

info: finishing processing for <example.net. DNSKEY

debug: validator[module 0] operate: extstate:module_wait_module

info: validator operate: query <example.net. DNSKEY

info: validated DNSKEY <example.net. DNSKEY

debug: validator[module 0] operate: extstate:module_wait_subquery

info: validator operate: query <corrupt.example.net. A

debug: verify: signature

info: validator: response has failed ANSWER rrset: <corrupt.example.net. A

info: Validate: message contains bad

debug: cache memory msg=198301 rrset=204039 infra=7516

30

3 DELEGATING OF SIGNING AUTHORITY; BECOMING GLOBALLY SECURE

2.8 Possible problems

SOA serial If you forget to increase the serial number before re-signing your
zone, secondary servers may not pick up the new signatures. This may
cause some of the authoritative servers to time out so some resolvers will
be able to validate your signature while others will not.

’Zone-signing key’ rollover If a zone administrator makes a distinction be-
tween zone and key-signing keys then the rollover of a zone-signing key
will not involve any action from the administrators of the validators. If a
key-signing key is to be changed care should be taken that all resolvers in
the organisation have been supplied with a new trusted-key.
If the zone is only locally secured (i.e. is not part of a chain of trust) then
the rollover of a key-signing key is relatively simple. Remember that to
validate data there has to be at least one signature that can be validate
with the trusted-keys in resolvers. For a limited time you use two key-
signing keys to sign your zone: the old and new key. During that time
you start reconfiguring the resolvers in your organisation with new trusted-
keys. Once all resolvers have the new key configured in their trusted-key>
statement, the zones should be signed with the new key only.
Also see Chapter 4, “Rolling keys”.

Slave server problems Slave servers will need to run code that is DNSSEC
enabled if one of the authoritative servers for a zone is not DNSSEC aware.
Problems may arise for the DNS client that tries to fetch data from those
DNSSEC oblivious servers.
The load on all your name servers will increase. Zone files, memory and
bandwidth consumption will grow. Factors 2-5 are not uncommon; See
“Hints and tips” for some numbers.

3 Delegating of signing authority; becoming globally se-
cure

This section is subject to change as the tools needed are currently being modi-
fied/developed.

3.1 Introduction

We have covered how to deploy DNSSEC in a single zone. We now want to build
a chain of trust, so that once a client has securely obtained a public key high
in the DNS hierarchy, it can follow the chain to validate data in your or your
children’s zones.

During the validation process a resolver will start from a configured trust
anchor. It will use that to validate the keys set at the apex of the zone. Once
the key-set has been validated the keys in that key-set can be used to validate

31

3 DELEGATING OF SIGNING AUTHORITY; BECOMING GLOBALLY SECURE

any other data in a zone, such as A, AAAA and PTR resource records. In order
to trust a child zone the validator will follow a pointer, stored in the DS resource
record, that points to a key in the child’s key-set that will be used to validate the
keys in that zone. That DS RR is signed by the parents zone-signing-key and
points to the child’s key-signing key (figure 4).

3.2 Practical steps

Below we will describe how to set up a zone that is globally secure based on the
parental signature over the DS record pointing to the child key-signing key.

In the example we use net as parent and example.net as child. At the
start of the process we assume that the parent zone is already locally secure but
has not secured the delegation yet. This means that the parent has no DS RR
for example.net. and that resolvers following the chain of trust via net. will
treat the example.net. zone as verifiably insecure. The example.net. zone is
assumed not to be secure. Much of the procedure will be similar to Chapter 2,
“Securing a DNS zone”, but, since key-sets are used, some details are different.

Our goal is to publish a parent zone with a DS RR. The DS RR is related to
the key singing key as generated by the child (the DS RR contains a cryptographic
hash over data in the DNSKEY RR). Therefore, the child needs to send some
information to the parent. To ease the process BIND introduces key-sets and
ds-sets.

A key-set is a small file, with the same syntax as a zone file, that contains
one or more key-signing keys of the child. The ds-set is also a similar file but this
file contains the DS RR that is to be included in the parent zone. These files are
created when signing a zone as described in Section 2.4. For for the example.net
zone they will be called dsset-example.net and keyset-example.net.

There are many imaginable ways to get the key-set to the parent. For instance

• the child sends a mail (cryptographically signed, to allow for integrity and
authentication checks) with either the ds-set or the key-set.
• the parent can fetch the appropriate key from the child’s DNS and create

a key-set file itself. This is done by putting the key material in a file called
keyset-child-domainname.
• a web based registration system interface is used to acquire the key-set.

In an operational environment it is extremely important that the authenticity
and the integrity of the DNSKEY is established. The zone administrator 12 of the
parent will need to validate that the key came from the zone administrator of the
child zone. If possible, this should be confirmed by an out-of-DNS mechanism.
The parent could use a customers database to validate if the key was actually
sent by the zone administrator. If a wrong key is signed the child zone will be
vulnerable for attacks; signing the wrong key breaks DNSSEC.

The parent stores the key-sets in the directory where zone files are stored,
or, when you want to maintain some file system hygiene, in a directory that is
to be specified with the -d flag of dnssec-signzone. The signzone tool will

12 The person who is responsible for publishing the zone data

32

3 DELEGATING OF SIGNING AUTHORITY; BECOMING GLOBALLY SECURE

automatically generate (or include) the appropriate DS records if the -g flag is
provided and a keyset-child-domainname (or the ds-set) is found. Although
the key-set generated by the child contains signatures the RRSIG RRs do not
need to be available in the keyset-child-domain file at the parent, the sign tool
will not perform signature validation.

Below is an example of how to invoke the command:

dnssec-signzone -r /dev/random -g -d /registry/tld-zone/child-keys/ \
-o tld -f tld.signed db.tld

An alternative method of including DS RRs into ones zone is by concatenating
to, or, including the ds-sets in the zone file.

cat /registry/tld-zone/child-dssets/dsset-* >> tld
dnssec-signzone -r /dev/random -o tld -f tld.signed db.tld

When the parent signs its own zone and uses the -d flag with dnssec-signzone
its own ds- and key-set will end up in the specified directory, that can be quite
confusing.

3.3 Possible problems

Public Key Algorithm To be globally secure you need to use at least one key
of an algorithm that is mandatory to implement. Mandatory to implement
are RSA/SHA1 and DSA keys. We recommend the use of RSA/SHA1 keys
only.

Parent indicating child security It is important that a DNSKEY is pub-
lished in the DNS before the parent includes a signed DS RR for that
key.
If the parent includes a DS RR while the child has not yet published the
key then the child will go ’bad’; By not having a DS RR for the child, the
parent indicates the child to be insecure.
As a parent you should always validate that the child publishes a signed
DNSKEY before including a DS RR.

3.4 Registering with a DLV registry

If your parent is not yet secure you could consider gesturing with a DLV registry
so that 3rd parties can still make use of the security your domain provides (for
client side configuration see section 1.5)

BINDs dnssec-signzone contains an option to create a file that con-
tains the data relevant to the DLV registry. Suppose that your favourite
DLV registry is anchored under dlv-registry.org then signing with the -l
<dlv-registry-anchor> option will create a dlvset file.

For example:

33

4 ROLLING KEYS

/usr/local/sbin/dnssec-signzone \
-l dlv-registry.org \
-o example.net \
-k Kexample.net.+005+49656 \
db.example.net \
Kexample.net.+005+17000.key

will create a file called dlvset-example.net. that contains the following
information:

example.net.dlv-registry.org. IN DLV 49656 5 1 3850EFB913AEC66275BCA53221587D445702397E

This author suggests you use the ISC lookaside registration service. See
http://www.isc.org/index.pl?/ops/dlv/

4 Rolling keys

A rollover is the process in which one key in a zone is replaced by another key.
Since keys have a limited lifetime they need to be changed occasionally. Care
needs to be taken that existing chains of trust are not broken during the rollover.

The rollover is defined by the moment keys generated with the ”new” private
key are first introduced into the zone. The key pair may have been generated well
in advance and the public key may also have been made public well in advance.

If the rollover is planned we refer to it as scheduled rollover. If the rollover
is the result of a (suspected) compromise or loss of private key it is called an
unscheduled or emergency key rollover.

There are two types of scheduled key rollovers. The rollovers of key-signing
keys and the rollovers of zone-signing keys.

Although the DNSSEC protocol does not make a distinction between zone-
and key-signing keys we strongly advice you to make this distinction as it provides
a clear separation between the keys that can be rolled without external interaction
(the zone-signing keys) and the keys that need external interaction (the key-
signing keys). You should use the -f KSK flag with dnssec-keygen when creating
key-signing keys so that you can always make a distinction between key- and
zone-signing keys by looking at the so-called flag field in the DNSKEY resource
record. Its flag-field will be odd (257 mostly) when you deal with a key-signing,
or SEP, key.

4.1 DNS traversal

Whenever data in a zone file is replaced by other data, it will need to propagate
through the DNS before DNS clients actually see it. In a non-DNSSEC envi-
ronment this may hardly ever be noticed, but when operating DNSSEC allowing
data to traverse through the DNS is critical.

DNS data with its associated signatures and the public key with which this
data is validated travel through the DNS independently. This also implies that

34

http://www.isc.org/index.pl?/ops/dlv/

4 ROLLING KEYS

the public keys and the signatures are independently cached and therefore expire
from caches at different times. As a consequence it can happen that an RRSIG
is validated with a DNSKEY from a cache and that the RRSIG and DNSKEY
come from different versions of the zone; i.e. the public key relates to a key that
is older than the signature. The reverse, where the signatures are older than the
public keys that are used for validation can also happen.

As a zone administrator you have to be aware of this behaviour and take into
account that your signatures will need to validate with any future or previous
version of your key-set. [9] describes the details which differ for zone-signing and
key-signing key rollovers. There are two approaches for this. The ”pre-publish”
and the ”double signature” rollover.

First let us take a closer look at how data traverses through the DNS. See
Figure 10 for reference.

At t0 new data replaces data from a previous version of the zone file. The
data is published on the authoritative master (or primary server). It will take
some time (which we refer to as zone synchronisation time) before the new version
of the zone is picked up by all authoritative servers. In the worst case scenario, a
change to a slave server will not be able to reach the master server and the zone
will expire. So the maximum value of the zone synchronisation time will be the
value of the SOA expiration parameter.

Assume that at some time (t1) between publication of the new zone on the
master server(t0) and the time the new zone is picked up by a slave server (t2)
a query for the data is done by a recursive caching name server. That recursive
server will return the old data to any of its clients for the time that is set by the
TTL value on the old RRset. Only after t4, will the recursive server go back and
query for new data picking up the new records.

Note that the t4 does not only depend on t1+TTL but is also upper bound
by the signature expiration time of the signature on the old RRset.

4.2 ”Pre-Publish” and ”Double Signature” rollovers

During a pre-publish rollover the public key is introduced in the DNSKEY RRset
well before RRSIGs are made with the private part of the key. The ”new” public
keys are then available in caches when the RRSIGs over the data show up on the
authoritative name servers and caching name servers can use cached DNSKEY
RRs to validate the new data.

During a double signature rollover the new key pair is introduced and sig-
natures are generated with both the new and the old key. Both public keys are
published in the DNS. After the period it takes for this data to propagate through
the DNS, the old key is removed and only the new key is published and used for
signing.

4.3 Tools

To properly maintain ’state’ you will need an operational note book. For each
of your zone there will be multiple KSKs and ZSKs and these keys all have a

35

4 ROLLING KEYS

Figure 10: DNS Data Propagation

’state’. The situation may become very confusing. Below we give an overview
of the operations using an ”operational note book” At the RIPE NCC a tool
has been developed that replaces the ”operational note book” and that links to
the signing operations. This tool is available through: http://www.ripe.net/
disi/dnssec_maint_tool/.

Sparta has developed a deamon and a control tool, rollerd and rollctl
respectively. Rollerd automates key rollovers. That is, it automates the steps
necessary to change over from one Zone Signing Key (ZSK) to the next using
the Pre-Publish Method of key rollover. It can also automate the less frequent
Key Signing Key (KSK) change over using the Double Signature Method of key
rollover. See RFC 4641[9] for a descriptions of these key rollover methods.

4.4 ZSK rollover

During a Zone-signing key (ZSK) rollover we use a ”pre-publish” scheme.

4.4.1 ZSK preparation (production phase)

Use the trivial example.com zone (Figure 11) as an example. The zone is stored
in db.example.com.

Assuming that we first start to publish example.com we generate two ZSK
keys and one KSK key.

36

http://www.ripe.net/disi/dnssec_maint_tool/
http://www.ripe.net/disi/dnssec_maint_tool/

4 ROLLING KEYS

; example.net zone
;
$TTL 100
$ORIGIN example.net.
@ 100 IN SOA ns.example.net. (

olaf.nlnetlabs.nl.
2002050501
100
200
604800
100
)

NS ns.example.net.
ns.example.net. A 192.168.2.203

a A 192.168.2.1
b A 192.168.2.2

* A 192.168.2.10
b.a A 192.168.2.11

Figure 11: Trivial example.com

dnssec-keygen -a RSASHA1 -b 1024 -n ZONE example.com
Kexample.com.+005+63935
dnssec-keygen -a RSASHA1 -b 1024 -n ZONE example.com
Kexample.com.+005+64700
dnssec-keygen -f KSK -a RSASHA1 -b 1024 -n ZONE example.com
Kexample.com.+005+54915

In the operational note book we note that key 63935 will be used as the active
and key 64700 as the passive ZSK. Both keys will be available through the key-set
but only the active key is used for signing.

After we generated the keys we include them in the zone by adding the
following include statements to db.example.com

;; ZSKs
$include Kexample.com.+005+63935.key
$include Kexample.com.+005+64700.key

37

4 ROLLING KEYS

;; KSKs
$include Kexample.com.+005+54915.key

Then sign the zone. Since we do not want to use dnssec-signzone’s default
behaviour, (which is to use all available keys for signing), we have to fully specify
which keys to use on the command line. Since you will have to do this frequently
the operational note book will come in handy.

dnssec-signzone -k Kexample.com.+005+54915.key -o example.com \
db.example.com Kexample.com.+005+63935

Note that we supplied the KSK as an argument with the -k switch and only
the active key ZSK as a signing key.

4.4.2 ZSK rollover (phase1)

Note down the signature expiration of the DNSKEY RR as it is now available
in the DNS. This value can be used as an upper limit for the duration of this
phase. It is the value of t4 in Figure 10. In the DNSKEY RR set below the
signature expiration time is August 21, 2004 around 11:35 UTC. If all 13 the
TTLs in your zone are not higher than for example 600, you would not have to
wait that long. You would have to wait until you see the new zone published in
all authoritative servers and an additional 10 minutes. The signature expiration
is an upper bound.

100 DNSKEY 256 3 5 (
AQPQyhg865V4zkFZN+FICLAZPWWaAf5I43pW
UcuOiejT92AVu0eHOkbH5YiHV97r+QjAdZ7K
W7W+bvbqKBR5P4QMVNm8zCs5Trb9OcOY0+bb
LYZG3aG69wUfF1pjvmFV5zUSRHCLMEzXb5NS
XdazgdhhuM07L2e2EfJGp5qijtRwpQ==
) ; key id = 63935

100 DNSKEY 256 3 5 (
AQPWrMsW0sGSTD7iE9ou+s7886WeSLIq/l/J
CgqwAn7jlECGAAN6cSHV5jWvovcWFthapWdG
DpC1uL48AcWtVWkRABGjU8Q16CAy0EcZ+24V
4cul+VluBt1YjuNfUlye+k5V+lmkjXBQ3Qdf
E8/owjsdx9mTkeQC4qiFjUxWXTl4DQ==
) ; key id = 64700

100 DNSKEY 257 3 5 (
AQPhZQ29Xg60NLgR+qdJENZpklU+WQF0abmp
Ni3CeOYyR+bd01Q/2WDI6BbWCLdIb9YflRaj
hmyb+AmzmjNzhw8VjcY9Sr2zIcG50ctuZ8Og
t7fcGrCbEM9fIDIKdDRlf+SY8OnGEMi6sI4m
bZ4zoh+nWfNrTxQR5hHv074uSAvZyQ==
) ; key id = 54915

13 including the last parameter in the SOA that is used for negative caching

38

4 ROLLING KEYS

100 RRSIG DNSKEY 5 2 100 20040821114554 (
20040722114554 54915 example.com.
gcnf3rf+D6izv9A//16u+Jx/LDVinLtcpkWR
yxDV5goS2SnoLfyEryqbSAyKbh4redyQCjSW
/HZXFBoPYrAy8fqaY1AfjVP+q9zJPvysUOp+
2T6mm8/9pcZoGXw1wPjPUAz+AF0oJnoaWo7t
764xvZc47kAI1pT0RTizV2BofcU=)

100 RRSIG DNSKEY 5 2 100 20040821114554 (
20040722114554 63935 example.com.
T7gRcEZkxEl5iGJdCzSu47Og9ydMO5Uggvcz
A9jETiTUrBttyYua7qDZOjNrzT4GVZ6s/UBw
tbGCqyMU/sVvaulP4h8oerX44bw5eP/mluLY
T9rwm2jBI1rZSPDdGDp8lJ2vvrxASYSF2Fxg

At the moment of the rollover you have to make your current passive key
(64700) active and your current active key (63935) passive. Also make a note
that this key is to be removed from the keyset in the next phase of the rollover.

Increase the SOA serial number and re-sign the zone using the new active key.

dnssec-signzone -k Kexample.com.+005+54915.key -o \
example.com db.example.com \
Kexample.com.+005+64700

Publish this zone in the DNS and make sure it remains published long enough
to propagate through the DNS.

4.4.3 ZSK Cleanup (phase2)

After the data has propagated though the DNS, you have to replace the passive
ZSK (63935) by a new passive key.

Start with generating the passive ZSK.

dnssec-keygen -a RSASHA1 -b 1024 -n ZONE example.com
Kexample.com.+005+01844

Add the new passive key (01844) into the zone file. Remove the old passive
key (63935) from the zone file.

;; ZSKs
$include Kexample.com.+005+64700.key
$include Kexample.com.+005+01844.key

;; KSKs
$include Kexample.com.+005+54915.key

39

4 ROLLING KEYS

Increase the SOA serial and re-sign using the same active key as in phase1.

dnssec-signzone -k Kexample.com.+005+54915.key -o example.com db.example.com \
Kexample.com.+005+64700

After publishing your zone you are back in the ”production” phase. You
should not proceed in a new rollover until the current DNSKEY RRset has had
a chance to propagate through the system

You can now delete the 63935 key. We suggest you move the key pair to a
separate directory or make a backup.

4.4.4 Modifying zone data during a rollover

You can at any time modify zone data other than the data in the key-set. As
long as you use the suitable active ZSK for signing.

4.5 Key-signing key rollovers

During a key-signing key (KSK) rollover we use a ”double signature” scheme.

4.5.1 KSK preparation (production phase)

We again use the trivial example.com zone (Figure 11) as an example. The zone
is stored in db.example.com. It contains a active and a passive ZSK (63935 and
64700 respectively) and a KSK (54915). The include statements are the same as
Section 4.4.1:

;; ZSKs
$include Kexample.com.+005+63935.key
$include Kexample.com.+005+64700.key

;; KSKs
$include Kexample.com.+005+54915.key

and the command to sign the zone is also the same.

dnssec-signzone -k Kexample.com.+005+54915.key -o example.com \
db.example.com Kexample.com.+005+63935

4.5.2 ZSK rollover (phase 1)

We start the rollover by generating a new KSK

40

4 ROLLING KEYS

dnssec-keygen -f KSK -a RSASHA1 -b 1024 -n ZONE example.com
Kexample.com.+005+06456

Insert the new KSK into the zone file:

;; ZSKs
$include Kexample.com.+005+63935.key
$include Kexample.com.+005+64700.key

;; KSKs
$include Kexample.com.+005+54915.key
$include Kexample.com.+005+06456.key

Sign the zone with both KSKs and the active ZSK.

dnssec-signzone -k Kexample.com.+005+54915.key \
-k Kexample.com.+005+06456.key -o example.com \
db.example.com \ Kexample.com.+005+64700

You have now introduced the new KSK key.
Since you are rolling a KSK you will have to upload this key to your parent

or have to configure it into your trust anchors (see Section 1.3). The public key
you will have to upload and configure is the new one with key-id 06456.

If your parent has a DS RR pointing to your old key, it will take time before
that DS RR has expired from caches. The upper limit on the t4 parameter is the
signature expiration time in the DS RR pointing to the old KSK (54915).

dnssec-signzone provides two files that will help you during this process.
dsset-example.com. and keyset-example.com.. The ”dsset” file contains the
DS RRs that relate to the KSKs in your zone file and the ”keyset” file contains
the KSKs published in your zone file. Remember that since you are replacing
keys only one of these entries (06456) will need to be sent/appear at your parent.

4.5.3 KSK cleanup (phase 2)

Once you are satisfied that all trust anchors are updated and the parental DS
RR has travelled through the DNS you can remove the old key from the set of
includes:

;; ZSKs
$include Kexample.com.+005+63935.key
$include Kexample.com.+005+64700.key

41

4 ROLLING KEYS

;; KSKs
$include Kexample.com.+005+06456.key

Sign the zone with the new KSK and the active ZSK.

dnssec-signzone -k Kexample.com.+005+06456.key \
-o example.com db.example.com \
Kexample.com.+005+64700

From this moment on you are in the production phase again.

4.5.4 Multiple KSKs

This algorithm also applies if you have multiple KSKs.The steps are:

• generate and include the new KSK in the zone;
• sign the zone with all KSKs; wait for propagation;
• remove one of the KSKs and sign with all left over KSKs.

42

5 SECURING ZONE TRANSFERS

Part II

Securing communication between
Servers

This part considers transaction security issues. It is focuses on se-
curing the transactions between authoritative servers, but the same
techniques can be used to secure dynamic updates.

5 Securing zone transfers

5.1 Introduction

The communication between hosts can be secured (authenticated and encrypted)
using a scheme based on symmetric cryptography. By sharing a key the adminis-
trators of two servers can be sure that DNS data is only being exchanged between
those two boxes and that the data has not been tampered with in transit.

The most known mechanism used to enable this is referred to as TSIG[12]
and is based on a shared secret. The shared secret is used to sign the content
of each DNS packet. The signature can be used for both authentication and
for integrity checking of the data. In order to prevent a malicious third party
retransmitting captured data (replay attack) a time stamp is included in the data.
The TSIG mechanism can also be used to prevent unauthorised zone transfers;
only owners of the secret key are able to do a zone transfer 14. We will describe
how primary server ns.foo.example and secondary server ns.example.com need
to be configured to enable TSIG for zone transfers.

To configure TSIG perform the following steps:

• Synchronise clocks.
• Create and distribute a shared secret, the TSIG key.
• At the primary server, create an access list specifying which keys are allowed

to transfer.
• At the secondary server, specify which keys to use when contacting which

primary servers

The first item is a prerequisite for DNSSEC. If you do DNSSEC you should
be in sync with the rest of the world: Use NTP. Time zones can be confusing.
Use date -u to validate if your machine has the proper UTC time.

TSIG configuration is a task for system administrators.

5.2 Generating a TSIG key

There are various ways to create a shared secret.
14 The data in the DNS is public data; disabling zone transfers does not guarantee your DNS

data will become ’invisible’

43

5 SECURING ZONE TRANSFERS

5.2.1 Generating a TSIG secret with dnssec-keygen

dnssec-keygen is the tool used to generate a base64 encoded random num-
ber that will be used as the secret. The arguments that we have to provide
dnssec-keygen to generate a TSIG key are (also see Figure 6):

dnssec-keygen -a hmac-md5 -b 256 -n HOST ns.foo.example.ns.example.com.
The command produces two files 15. The name of the files contain relevant

information:
Kdomain name+algorithm id+key id.extension

The domain name is the name specified as the name of the key. The name
specified here does not need to be a name that you can query in the DNS but
should be a name can be encoded as a domain name. The convention is to
concatenate the DNS names of the two servers.

One can use dnssec-keygen to generate a truly random secret or use a
passphrase - we describe both methods in Section 5.2. In this particular case
ns.foo.example. and ns.example.com. The algorithm id identifies the al-
gorithm used: 5 for HMAC-MD5 (1 and 3 are for RSA and DSA respectively, see
Appendix A.1. in [5]). The key id is an identifier for the key material, it is not
of relevance for symmetric keys. The extension is either key or private, the
first is the public key and the second is the private key.

The format of these files differs a bit but they contain exactly the same
information; a base64 encoded random number that you are going to use as a
shared secret. Do not be misled by the extensions private and key, both files
should be kept secure. Since the secret material is copied to the configuration files
and these files are not used in production you should actually consider deleting
them.

Note that the -n HOST and the name are not used for the generation of the
base64 encoded random number. It is a convention to use the unique domain
name label used to identify the key as the name.

dnssec-keygen -r /dev/random -a HMAC-MD5 -b 128 -n HOST \
ns.foo.example.ns.example.com.

Kns.foo.example.ns.example.com.+157+12274

cat Kns.foo.example.ns.example.com.+157+12274.key
ns.foo.example.ns.example.com. IN DNSKEY 512 3 157 gQOqMJA/LGHwJa8vtD7u6w==

cat Kns.foo.example.ns.example.com.+157+12274.private
Private-key-format: v1.2
Algorithm: 157 (HMAC_MD5)
Key: gQOqMJA/LGHwJa8vtD7u6w==

The base64 encoded random number is is the thing you need to extract from
either of these files (i.e. gQOqMJA/LGHwJa8vtD7u6w==) it specifies the secret in
the key statement:

15 It is a feature of the dnssec-keygen program to always creates two files, even when it is
generating symmetric keys.

44

5 SECURING ZONE TRANSFERS

key ns.foo.example.ns.example.com.{
algorithm hmac-md5;
secret "gQOqMJA/LGHwJa8vtD7u6w==";

};

This key definition should be included in both primary and secondary name
server configuration files and should be exactly the same on both sides (in this
example ns.foo.example.ns.example.com. is used on both name servers). It
is recommended to generate a secret for each different party, with which you are
involved and you will need to maintain as many secrets as zones for which you
have secondaries.

5.2.2 Other ways to generate secrets

The dnssec-keygen command provides you with a truly random bit sequence.
It might be difficult to communicate the secret to your colleague running a sec-
ondary server on the other side of the world. In those cases you may want to
choose to fall back to a pass-phrase that can be communicated over the telephone.

You can use any base64 encoder to convert the pass-phrase to a valid string
in the key-definition.

echo "Crypto Rules" | mmencode
Q3J5cHRvIFJ1bGVzCg==

If mmencode is not available maybe this perl script can assist you.

#!/usr/bin/perl
use MIME::Base64;
print encode_base64("@ARGV") ;

Actually any string that can be base64 decoded will do, for example
ThisIsAValidBase64String can also be used as secret.

5.3 Configuring TSIG keys

To secure a zone transfer, the primary server and the secondary server admin-
istrators have to configure a TSIG key in named.conf. The TSIG key consists
of a secret and a hashing algorithm and are identified by domain names. We
recommend that you maintain the list of secret keys in a separate file which is
readable by root only and included in the named.conf file (e.g. by include
/var/named/shared.keys).

The key statement looks like:

45

5 SECURING ZONE TRANSFERS

key ns.foo.example.ns.example.com. {
algorithm hmac-md5
secret "gQOqMJA/LGHwJa8vtD7u6w==";

};

This statement needs to be exactly the same for the two parties involved.

5.4 Primary servers configuration of TSIG

Both the primary and secondary server should have shared secret configured by
using the key statement in a file included in named.conf (see above).

The primary server can now use the key in what BIND calls an
[3] address match list. These lists appear in the allow-notify, allow-query,
allow-transfer and allow-recursion statements which controls access to the
server. (Also see section 6.1.1 and 6.2.14.3 of the on-line BIND documentation).

Relevant at this point is the allow-transfer in the zone statement. Using
the key generated above, the primary server for foo.example would have the
following statement in named.conf:

zone "foo.example" {
type master;
file db.foo.example.signed;
\\ allow transfer only from secondary server that has
\\ key ns.foo.example.ns.example.com.
allow-transfer { key ns.foo.example.ns.example.com. ; };
notify yes;

};

5.5 Secondary servers configuration of TSIG

Both the primary and secondary server should have shared secret configured by
using the key statement in named.conf (see above).

The server definition in named.conf is used to instruct the name server to
use a specific key when contacting another name server.

\\ secondary for foo.example.
\\ primary server ns.foo.example is on 10.1.1.2
server 10.1.1.2 {

keys { ns.foo.example.ns.example.com.;};
};

46

5 SECURING ZONE TRANSFERS

5.6 Securing the NOTIFY message too

The setup above will provide signatures for the zone transfer from the primary
to the secondary. Since the session is initiated by the secondary server 16 it is the
secondary server that sets up the secure link. Therefore, the secondary server
has the server definition in its named.conf. Alternatively you can secure the
traffic to the secondary server that was initiated by the primary server. Think
of the NOTIFY messages send to the secondary server when the zone content
changed. That traffic will be TSIG signed as soon as you add a server with the
secondary’s IP address in the primary’s named.conf. You can use the same key
as for the zone transfer.

Once the primary server has configured its server to use TSIG to sign the
NOTIFY messages the secondary server can use the key in the allow-notify
access control list.

5.7 Troubleshooting TSIG configuration

You can check the format of your named.conf using the named-checkconf pro-
gram. This program reads the configuration file using the same routines as named
itself.

To troubleshoot your configuration, you have the log file and dig at your
disposal.

Before adding the allow-transfer {key ns.foo.example.ns.example.com.
;}; you should be able to transfer the domain from any machine. dig
@ns.foo.example foo.example AXFR should be successful. After key config-
uration the same command should fail and give you output similar to:

; <<>> DiG 9.2.0rc1 <<>> @ns.foo.example foo.example AXFR
;; global options printcmd
; Transfer failed.

You can test if the key is configured correctly in two ways.

Method 1 Ask the zone administrator to increase the SOA serial and to have
the zone reloaded on the primary server. The secondary server should pick up
the changes.

The log file of the secondary server will have entries similar to:

... general: info: zone foo.example/IN: transfered serial 2001082801

... xfer-in: info: transfer of ’foo.example/IN’ from 10.1.1.2\#53: end of transfer

16 Remember the zone transfer is over TCP

47

5 SECURING ZONE TRANSFERS

Method 2 Use dig to test the key by using the -k flag.

dig @ns.foo.example -k Kns.foo.example.ns.example.com.+157+12274.key \
foo.example AXFR

Alternatively you can use the -y switch and specify the key-name and the
secret 17 with the -y switch.

dig @ns.foo.example \
-y ns.foo.example.ns.example.com.:gQOqMJA/LGHwJa8vtD7u6w== \
foo.example AXFR

If the key did not match the log file of the primary server against which you tried
this, will have entries similar to the following.

... security: error: client 10.1.1.6#1379: zone transfer ’foo.example.com/IN’ denied

5.8 Possible problems

5.8.1 Timing problems

Machines that are involved in a TSIG signed transaction need to have their
clocks synchronised to within a few 18 minutes. Use ’NTP’ to synchronise the
machines and make sure the time zones are correctly configured. A wrong time-
zone configuration can lead to hard to spot problems; use date -u to check what
your machine thinks is the ’UTC’ time.

5.8.2 Multiple server directives

TSIG is a mechanism to protect communication on a per machine basis. Hav-
ing multiple server directives for the same server or multiple keys in one server
directive will lead to unexpected results.

17 Take care when using secrets on the command line of multi-user systems: on most Unix
systems command line arguments are visible on the output of ps or via the /proc file system

18 BIND has 5 minutes hard coded

48

7 USING DIG FOR TROUBLESHOOTING

Part III

Troubleshooting tools

This part describes a few practical trouble shooting tools that may
help to understand what goes wrong, if something goes wrong.

6 Using drill for troubleshooting

Both dig, from the BIND distribution, as drill can be used for trouble shooting
DNSSEC set ups. See section 7 for more information about dig, we will first
discuss drill.

drill is part of the ldns library available from http://www.nlnetlabs.nl/
ldns/. Installation instructions are also available on that page. (It is as simple
as: ./configure ; make ; make install).

Drill’s -T and -S switches are particularly helpful when troubleshooting
DNSSEC setups. Using drill with the -T follows the chain of trust from the
root to the leaves and indicates the security status (see figure 13). With the -S
flag drill will chase the signatures from the leave-node back to the root, looking
for the relevant records (see figure 14). When using the -T or -S flag you will
have to specify a file that contains a trust-anchor in RR format i.e. just as in
the files generated by dnssec-keygen (see page 21).

The ldns library does not only come with drill. You will find a few useful
utilities in its examples directory. Among others there are:

ldns-key2ds Creates a DS record from a DNSKEY record
ldns-keyfecther Fetches DNSSEC public keys for zones
ldns-keygen Generate private/pubkey key pair for DNSSEC.
ldns-signzone Signs a zone file according to DNSSECbis.
ldns-walk ’Walks’ a DNSSEC zone

7 Using dig for troubleshooting

dig has a few switches that come in useful when troubleshooting DNSSEC setups.

+multiline Structures the output of dig so that it is easily readable. As a
bonus the keyid will be printed as a comment behind DNSKEY RRs.

+cd Sets the ”checking disabled” bit on the query. You would typically use this
when your validating recursive name server reports a SERVFAIL and you
need to establish if the is due to DNSSEC marking this data as ”bad”.

+dnssec Forces the server being queried to include the DNSSEC related data.
Use in combination with the +cd to establish if data from a zone is signed
at all or if you want to determine if the validity intervals on the signatures
are correct.

+trace Traces delegation chain. This option may be helpful if you trying to
figure out where the delegation points are.

49

http://www.nlnetlabs.nl/ldns/
http://www.nlnetlabs.nl/ldns/

8 DNSSEC TOOLS

+sigchase Traces the the signature chain. You will also need to have a
./trusted-keys.keys or /etc/trusted-keys.keys available that con-
tains trusted key entries.

8 DNSSEC tools

A number of open-source DNSSEC tools can be found at www.dnssec-tools.
org. The site contains a number of generic maintenance tools for zone and key
administration, some DNSSEC applications (mozilla and spam assasin plug-ins),
and a few troubleshooting tools.

One of these tools has is dnspktflow tool that visualizes DNS ’streams’ in
a graph. This tool may help, in combination with the tools above, to create a
bit of insight of what is going on. For instance, in figure 15 the packets that are
send and received during the trace in figure 14 are shown.

50

www.dnssec-tools.org
www.dnssec-tools.org

8 DNSSEC TOOLS

bin/drill version 1.2.0 (ldns version 1.3.0)

Written by NLnet Labs.

Copyright (c) 2004-2006 NLnet Labs.

Licensed under the revised BSD license.

There is NO warranty; not even for MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE.

Usage: bin/drill name [@server] [type] [class]

<name> can be a domain name or an IP address (-x lookups)

<type> defaults to A

<class> defaults to IN

arguments may be placed in random order

Options:

-D enable DNSSEC (DO bit)

-T trace from the root down to <name>

-S chase signature(s) from <name> to a know key [*]

-V <number> verbosity (0-5)

-Q quiet mode (overrules -V)

-f file read packet from file and send it

-i file read packet from file and print it

-w file write answer packet to file

-q file write query packet to file

-h show this help

-v show version

Query options:

-4 stay on ip4

-6 stay on ip6

-a only query the first nameserver (default is to try all)

-b <bufsize> use <bufsize> as the buffer size (defaults to 512 b)

-c <file> use file for rescursive nameserver configuration (/etc/resolv.conf)

-k <file> specify a file that contains a trusted DNSSEC key [**]

used to verify any signatures in the current answer

-o <mnemonic> set flags to: [QR|qr][AA|aa][TC|tc][RD|rd][CD|cd][RA|ra][AD|ad]

lowercase: unset bit, uppercase: set bit

-p <port> use <port> as remote port number

-s show the DS RR for each key in a packet

-u send the query with udp (the default)

-x do a reverse lookup

when doing a secure trace:

-r <file> use file as root servers hint file

-t send the query with tcp (connected)

-d <domain> use domain as the start point for the trace

-y <name:key[:algo]> specify named base64 tsig key, and optional an

algorithm (defaults to hmac-md5.sig-alg.reg.int)

-z don’t randomize the nameservers before use

[*] = enables/implies DNSSEC

[**] = can be given more than once

ldns-team@nlnetlabs.nl | http://www.nlnetlabs.nl/ldns/

Figure 12: drill arguments

51

8 DNSSEC TOOLS

;; Domain: .

1[T] . 100 IN DNSKEY 256 3 5 ;{id = 63380 (zsk), size = 1024b}

. 100 IN DNSKEY 257 3 5 ;{id = 63276 (ksk), size = 1280b}

[T] net. 100 IN DS 13467 5 1 de01426e08ddb9186502ccc1081390cd7da0e178

net. 100 IN DS 13467 5 2 ec9b094786b82c46aa3054c7352b59904b697119d515b4ea536ec3dd9a10ed81

;; Domain: net.

1[T] net. 100 IN DNSKEY 256 3 5 ;{id = 62972 (zsk), size = 1024b}

net. 100 IN DNSKEY 257 3 5 ;{id = 13467 (ksk), size = 1280b}

1[T] example.net. 100 IN DS 49656 5 2 9e06b299abe811d699e077fff990ff5a1b496c914deb22697ba22a1da31f0a6e

example.net. 100 IN DS 49656 5 1 3850efb913aec66275bca53221587d445702397e

;; Domain: example.net.

1[T] example.net. 100 IN DNSKEY 256 3 5 ;{id = 17000 (zsk), size = 1024b}

example.net. 100 IN DNSKEY 257 3 5 ;{id = 49656 (ksk), size = 1280b}

1[T] example.net. 100 IN SOA ns.example.net. olaf.nlnetlabs.nl. 2002050501 100 200 604800 100

;;[S] self sig OK; [B] bogus; [T] trusted

Figure 13: Output of drill -T -k < root.ksk > example.net SOA

;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 24124

;; flags: qr rd cd ra ; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 0

;; QUESTION SECTION:

;; example.net. IN SOA

;; ANSWER SECTION:

example.net. 100 IN SOA ns.example.net. olaf.nlnetlabs.nl. 2002050501 100 200 604800 100

example.net. 100 IN RRSIG SOA 5 2 100 20080629121733 20080530121733 17000 example.net. sYAU941Zl6akYCmY8U0Tr6Z+ucXyuaalmb6s5OGV+7HTDubbKNsgV+7mWwrjqkP1rIW3cBEfaIFtDScqtb3gJUZPXum+7zac8XguAsmPXTb5NyzkeL1d3kgGrUT1TplijiLVF2GMJurg6aQfBvlPNlgGgnmDmq4MkymQoNN2fDw= ;{id = 17000}

;; AUTHORITY SECTION:

example.net. 100 IN NS ns.example.net.

example.net. 100 IN RRSIG NS 5 2 100 20080629121733 20080530121733 17000 example.net. ZrYSQrCnRD2bHjONVPp2NkHUZySeONB1cGCLxdDlxx48vhSyCQia9RXVCpEoEFM1KySTGZzH5BZ1G39ALV+YBPGKQ3Y2wkWThNvl2JbNj8eWm4qVGrmTSY0ZGNXc94vgyEttVBoIXw8FE9IdfupNdla2QiNGCqeRVj3ruxmhvW0= ;{id = 17000}

;; ADDITIONAL SECTION:

;; Query time: 3 msec

;; EDNS: version 0; flags: do ; udp: 4096

;; SERVER: 192.168.2.204

;; WHEN: Fri May 30 15:17:34 2008

;; MSG SIZE rcvd: 452

;; Chasing: example.net. SOA

DNSSEC Trust tree:

example.net. (SOA)

|---example.net. (DNSKEY keytag: 17000)

|---example.net. (DNSKEY keytag: 49656)

|---example.net. (DS keytag: 49656)

|---net. (DNSKEY keytag: 62972)

|---net. (DNSKEY keytag: 13467)

|---net. (DS keytag: 13467)

|---. (DNSKEY keytag: 63380)

|---. (DNSKEY keytag: 63276)

;; Chase successful

Figure 14: Output of drill -S -k < root.ksk > example.net SOA

52

8 DNSSEC TOOLS

Figure 15: Example of dnspktflow output
53

A BIND INSTALLATION

Part IV

Appendices

A BIND installation

There are two open-source reference implementations of DNSSEC for authorita-
tive servers known to the author: BIND and NSD (http://www.nlnetlabs.nl/
nsd). BIND is currently the only open-source recursive name server known to do
DNSSEC validation.

DNSSEC is available as of BIND 9.3.0. The latest versions of BIND can
be found on ISC’s ftp server. DNSSEC support is only compiled if the openssl
library is configured during compilation.

Make sure you fetch the latest version of BIND (take care of the patch level
of the release indicated by -Pnumber) and verify the checksum.

configure with the --with-openssl flag.
If you want to have the ”sigchase” capability (see Section 7) compiled into

dig you will have to set the STF CDEFINES variable to the -DDIG SIGCHASE=1
Check the output of config to confirm that openssl was found. For example:

cd /usr/local/src
tar -xzf bind-9.4.1-P1.tar.gz
openssl sha1 bind-9.4.1-P1.tar.gz
...
cd bind-9.4.1-P1
./configure --prefix=/usr/local --with-openssl=/sw/

...
Checking whether byte ordering is bigendian... yes
checking for OpenSSL library... using openssl from /sw//lib and /sw//include
checking whether linking with OpenSSL works... yes
...

Please note that BIND 9.4.1 does not have DNSSEC enabled by default.
Therefore you have to use the dnssec-enable and the dnssec-validation di-
rectives in the options section of named.conf.

options {
// turn on dnssec awareness
dnssec-enable yes;
dnssec-validation yes;
};

54

http://www.nlnetlabs.nl/nsd
http://www.nlnetlabs.nl/nsd

C GENERATING RANDOM NUMBERS

B Estimating zone size increase

When planning to sign zones you have have to consider that zone-signing will
increase your zone file size and the amount of memory used in the authoritative
name servers. We have performed some measurements where we took a number
of zone files, signed them and loaded them on a name server.

We started with the 1.8 thousand zones that the RIPE NCC serves on their
authoritative servers. For a number of these zones the RIPE NCC is the primary
server but for the largest part these are zones for which the RIPE NCC is sec-
ondary. The zones can roughly be split into two classes; ”end-node” zones and
”delegation” zones. In end-node-zones, the data for most names in the zone is
authoritative (containing e.g. A, AAAA or PTR for most names). Delegation zones
contain mostly delegations (NS) records, typically these are Top-Level Domains
and ”/16 reverse delegation” domains.

We signed the zone files with a 1024 bit RSASHA1 zone-signing key. During
the signing NSEC RRs with corresponding RRSIGs are added and all RRsets in
the zone are signed. Since a delegation NS RR is not an authoritative piece of
data, no signature is created.

Typically for an ”end-node” zone one NSEC and two RRSIGs are introduced
into the zone, while for a delegation-type zone only one of each type of security
record is introduced. In Figure 16 we plotted the zone file size increase as a
function of the number of NSEC records. The number of NSEC records correlates
with the number of domain names in a zone. In the figure you can clearly see
a bi-modal distribution. One for the ”end-node” type of zones and one for the
delegation type of zone.

We fitted two linear relations to this data and found that for a delegation type
of zone the size increase is 350 bytes per owner name while for an ”end-node”
zone the increase is 672 bytes per owner name.

In Figure 17, we plotted the relation between increase in core size versus
the zone file size increase due to signing. The relation is linear and the slope is
roughly 0.73. The core size increase is roughly 200 and 500 bytes for delegation
type and end-node type zones respectively.

You can use these parameters for approximate size calculations. Results may
vary depending on the size and the algorithm of the key you use, the version of
BIND 19 and the content of the zone.

C Generating random numbers

The generation of keys and, for the DSA algorithm, the generation of signatures
requires random numbers. You should take care that the random number gen-
erator produces ”genuine” random numbers. The quality of random numbers
generated in software is debatable. This also applies to /dev/random devices.
These extract ”randomness” from hardware response times. You should ensure
that your operating system produces a flow of good random numbers. For a

19 These measurements were done with a snapshot version of BIND 9.3

55

D PERL’S NET::DNS::SEC LIBRARY

Figure 16: Zone size vs number of owner names

machine that does not have any external sources of ”randomness”, this may be
tricky to achieve and cause your key generator or signer to block and wait for
entropy (”randomness”).

One relatively simple tool to test ”randomness” of data streams is ent from
Fourmilab <http://www.fourmilab.ch/random/>. Alternatively you could use
tools from NIST <http://csrc.nist.gov/rng/>. ”Good” measurement result
from ent or the NIST tools should not be taken as a proof that your random
number generator is perfect. There could be systematic effects that are hard to
find using this particular tool 20.

Relatively cheap sources of random data are USB crypto tokens. For more
information about these tokens and random number generation see the Open-
fortress website <http://openfortress.org/cryptodoc/random/>.

D Perl’s Net::DNS::SEC library

If you want to build tools to maintain your DNSSEC zones you may want to
have a look at the Net::DNS::SEC library available on (CPAN <http://search.
cpan.org/dist/Net-DNS-SEC/>). Using this extention to the Net::DNS library

20 For instance the predictable behavior of hardware during the boot of an OS may cause bit
streams generated shortly after two boot sequences to be correlated

56

http://www.fourmilab.ch/random/
http://csrc.nist.gov/rng/
http://openfortress.org/cryptodoc/random/
http://search.cpan.org/dist/Net-DNS-SEC/
http://search.cpan.org/dist/Net-DNS-SEC/

D PERL’S NET::DNS::SEC LIBRARY

Figure 17: Core size vs zone file size

it is fairly easy to write scripts such as the one below that validate that the
signature over a SOA will not expire within the next 24 hours.

#!/usr/local/bin/perl -T -Wall
#

checkexpire.pl

Example script that queries an authoritative server for a SOA
record and verifies that the signatures over the record are still
valid and will not expire in the next 24 hours.

This anotated and somewhat verbose script is written for
demonstration purposes only hence some possible error conditions
are not tested for.

use strict;
use Net::DNS::SEC;
use Time::Local;

The domain and its master server.
my $domain="secret-wg.org";
my $authoritative_server="ns.secret-wg.org";

57

D PERL’S NET::DNS::SEC LIBRARY

Setting up the resolver (use perldoc Net::DNS::Resolver for the
documentation of this class and its methods)
my $res = Net::DNS::Resolver->new();

Query the default resolver to find out what the address is of the
authoritative server.
my $answerpacket_auth_server= $res->query($authoritative_server,"A");

Digest the packet see perldoc Net::DNS::Packet and perldoc
Net::DNS::RR::A We ignore error checking. The first RR in the answer
section is assumed to be the A RR for ns.secret-wg.org.

my $auth_address=($answerpacket_auth_server->answer)[0]->address;

Set up the resolver object so it queries the authoritative server.
$res->nameserver($auth_address);

Set up the resolver so that it talks DNSSEC
$res->dnssec(1);

Send the query for the soa to the authoritative nameserver.
my $packet=$res->send($domain,"SOA");

Digest the answer section, realizing there may be more than one
RRSIG (per definition there is always one SOA RR.

my $soa;
my @soasig;
foreach my $rr ($packet->answer){

if ($rr->type eq "SOA"){
$soa=$rr;
next;

}
if ($rr->type eq "RRSIG"){

push @soasig,$rr;
next;

}
}

die "NO SOA RR found" unless $soa;
die "NO RRSIGs over the SOA found" unless @soasig;
print @soasig ." signatures found\n";

Fetch the keys that belong to this zone (DNSKEYs live, like the SOA
at the apex.)

my @keyrr;

58

D PERL’S NET::DNS::SEC LIBRARY

$packet=$res->send($domain,"DNSKEY");
foreach my $rr ($packet->answer){

if ($rr->type eq "DNSKEY"){
push @keyrr,$rr;
next;

}
}

die "NO DNSKEYS found for $domain" unless @keyrr;

Now loop over each signature, fetch the public part of the key with
which the signature was made, validate the signature and do the date
comparisson.

See perldoc Net::DNS::RR::RRSIG for the methods to access the RRSIGs
internals

SIGLOOP: foreach my $sig (@soasig){
print "Checking signature made with key ".$sig->keytag ."\n";
verify the signature.
first select the key with the proper keytag from the key set.
my $keyfound=0;

KEYLOOP: foreach my $key (@keyrr){
next KEYLOOP if ($key->keytag != $sig->keytag);
$keyfound=$key;
last KEYLOOP;

}
print "WARNING: NO public key found to validate:\n " .

$sig->string."\n" unless $keyfound;

Do the actual validation.
if (! $sig->verify([$soa],$keyfound)){

The signature did not validate. Say why.
print "WARN: Signature made with " .$sig->keytag . " failed to verify:\n".

$sig->vrfyerrstr;
}else{

The signature validated.
Lets verify if we have more than 24 hours before expiration.

$sig->sigexpiration =~ /(\d{4})(\d{2})(\d{2})(\d{2})(\d{2})(\d{2})/;
my $expiration=timegm ($6, $5, $4, $3, $2-1, $1-1900);
my $hourstogo=($expiration-time())/3600;
print "WARNING: Signature made with ".$sig->tag. "will expire within ".

$hourstogo . " hours\n" if $hourstogo <24;

}

59

D PERL’S NET::DNS::SEC LIBRARY

}

####
$Id: expire.pl 21 2004-10-11 14:52:09Z olaf $
####

60

REFERENCES

References

[1] Ron Aitchison. Pro DNS and BIND. Apress, 2005.

[2] Paul Albitz and Cricket Liu. DNS and BIND, 4th Edition. O’Reilly, 4
edition, April 2001.

[3] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security
Introduction and Requirements. RFC 4033 (Proposed Standard), March
2005. http://www.ietf.org/rfc/rfc4033.txt.

[4] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol Modi-
fications for the DNS Security Extensions. RFC 4035 (Proposed Standard),
March 2005. http://www.ietf.org/rfc/rfc4035.txt, (Updated by RFC

4470).

[5] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Resource Records
for the DNS Security Extensions. RFC 4034 (Proposed Standard), March
2005. http://www.ietf.org/rfc/rfc4034.txt, (Updated by RFC 4470).

[6] Geoff Huston. DNSSEC The Opinion. The ISOC ISP column, November
2006. http://ispcolumn.isoc.org/2006-10/dnssec3.html.

[7] Geoff Huston. DNSSEC The Practice. The ISOC ISP column, September
2006. http://ispcolumn.isoc.org/2006-09/dnssec2.html.

[8] Geoff Huston. DNSSEC The Theory. The ISOC ISP column, August 2006.
http://ispcolumn.isoc.org/2006-08/dnssec.html.

[9] O. Kolkman and R. Gieben. DNSSEC Operational Practices. RFC
4641 (Proposed Standard), September 2006. http://www.ietf.org/rfc/
rfc4641.txt.

[10] O. Kolkman, J. Schlyter, and E. Lewis. Domain Name System KEY
(DNSKEY) Resource Record (RR) Secure Entry Point (SEP) Flag. RFC
3757 (Proposed Standard), April 2004. http://www.ietf.org/rfc/
rfc3757.txt, (Obsoleted by RFCs 4033, 4034, 4035).

[11] Evi Nemeth. Securing the DNS. ;login:, pages 21–31, November 2000.

[12] P. Vixie, O. Gudmundsson, D. Eastlake 3rd, and B. Wellington. Secret
Key Transaction Authentication for DNS (TSIG). RFC 2845 (Proposed
Standard), May 2000. http://www.ietf.org/rfc/rfc2845.txt, (Updated

by RFC 3645).

[13] Paul Vixie. Preventing Child Neglect in DNSSECbis Using Lookaside Val-
idation (DLV). IEICE-Transactions on Communications, E88-B, number
4:21–31, April 2005.

[14] Paul Vixy and Mark Andrews. DNSSEC Lookaside Validation (DLV), April
2006. http://www.isc.org/pubs/tn/isc-tn-2006-1.html.

61

http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4035.txt
http://www.ietf.org/rfc/rfc4035.txt
http://www.ietf.org/rfc/rfc4034.txt
http://www.ietf.org/rfc/rfc4034.txt
http://ispcolumn.isoc.org/2006-10/dnssec3.html
http://ispcolumn.isoc.org/2006-10/dnssec3.html
http://ispcolumn.isoc.org/2006-09/dnssec2.html
http://ispcolumn.isoc.org/2006-09/dnssec2.html
http://ispcolumn.isoc.org/2006-08/dnssec.html
http://ispcolumn.isoc.org/2006-08/dnssec.html
http://www.ietf.org/rfc/rfc4641.txt
http://www.ietf.org/rfc/rfc4641.txt
http://www.ietf.org/rfc/rfc4641.txt
http://www.ietf.org/rfc/rfc4641.txt
http://www.ietf.org/rfc/rfc3757.txt
http://www.ietf.org/rfc/rfc3757.txt
http://www.ietf.org/rfc/rfc3757.txt
http://www.ietf.org/rfc/rfc3757.txt
http://www.ietf.org/rfc/rfc2845.txt
http://www.ietf.org/rfc/rfc2845.txt
http://www.isc.org/pubs/tn/isc-tn-2006-1.html
http://www.isc.org/pubs/tn/isc-tn-2006-1.html

REFERENCES

Acknowledgements

The RIPE NCC for their initial investment of my resources in this document.
There are numerous people who helped compiling these notes, either by helping me to

understand DNSSEC or by giving feedback on earlier versions of this document. Special thanks
go to Roy Arends, Rossen Antonov, Adrian Bedford, Emma Bretherick, Daniel Diaz, Miek
Gieben, Geoff Huston, Daniel Karrenberg, Marc Lampo, Ed Lewis, Cricket Liu, Rick van Rein,
Andrew Ruthven, Jakob Shlyter, Paul Vixie, and Wouter Wijngaards who provided feedback on
this or earlier versions of this document Also, thanks to the participants of a DNSSEC workshop
at InERLab in November 2006 for being guinea-pigs for version 1.8. A workshop organized bu
USC/ISI on operational testing of DS in Washington DC has provided a substantial amount of
material for version 1.3 of the document. Finally, a ’login;’ article by Evi Nemith[11], the text
in the BIND book and the various presentations by Edward Lewis have been the examples on
which I based version 1.1 of this document.

Colophon

This document will be subject to change. Please regularly check for new versions. <http:

//www.nlnetlabs.nl/dnssec_howto/>. Your corrections and additions are appreciated.
If you have questions, remarks or contributions please contact dnssec-howto-editor at nl-

netlabs dot nl
The sourcetext of this document has shortly been in Docbook format. As of version 1.8 it

is again authored as tex. I have much more experience and control over the output with TeX.
As of version 1.8 some of the examples and log-outputs are maintained with some shell scripts
and make.

The source text and the “DNS infrastructure” needed to create example output is all under
subversion version control.

This PDF version of the howto has been created with pdf2latex the html version has been
created with tex4ht. The tex source, or a snapshot of the subversion repository, is available on
request (dnssec-howto-editor at nlnetlabs dot nl).

Document History

Version 1.8 Public release, January 2006
The document was brought under subversion control. That changed the revision num-
bering from doted notation to continous revision numbers. The publication versions are
now manually remained. The document source has been back-ported from docbook to
latex. Section 3 was rewritten and names and addresses where made consistent. Most
of the examples are now generated automatically in order to maintain consistency after
software upgrades.
Some minor editorial corrections were performed post publication. The subversion Id is
relevant.

Revision 1.7 Public release, April 2005.
Paragraph added to clarify the TSIG signing of NOTIFY messages. Minor editorial fixes.
References were added.

Revisions 1.6 Public release, December 2004
Minor editorial fixes.

Revisions 1.5 Public release.
Revisions 1.4.4.1 - 1.4.4.9 Several snapshots that where not publically available. The doc-

ument source was ported from TeX to docbook source and was updated to reflect expe-
riences with keymanagement. Large chunks were rewritten and we added a number of
figures. This version of the documentation is based on the DNSSEC bis specification and
bind9.3.0beta implementation.

62

http://www.nlnetlabs.nl/dnssec_howto/
http://www.nlnetlabs.nl/dnssec_howto/

REFERENCES

Version 1.3, Oct 2002 The first modification of the document. First experiences with DS
have been incooperated and the document has been rewritten to be useful as a more
generic HOWTO and introduction to \dnssec operations.

Version 1.2 was not published.
Version 1.1 Was compiled for a DNSSEC tutorial in Prague, October 8, 2000. The document

was a set of notes to be used in a workshop setup.

COPYRIGHT

Copyright c© 2006, 2007, 2008 NLnet Labs

Copyright c© 2002, 2003, 2004, 2005 RIPE NCC

Legal Notice

This document and the information contained herein is provided on an as
is basis and NLnet Labs and RIPE NCC disclaim all warranties, express
or implied, including but not limited to any warranty that the use of the
information herein will not infringe any rights or any implied warranties
of merchantability or fitness for a particular purpose.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in
its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and
derivative works.

63

	I Securing DNS data
	Configuring a recursive name server to validate answers
	Introduction
	Warning
	Configuring the caching forwarder
	Configuring a trust anchor
	Testing

	Finding trust-anchors
	Lookaside Validation
	Configuring lookaside validation
	testing

	Some Troubleshooting Tips

	Securing a DNS zone
	Introduction
	Configuring authoritative servers
	Creating key pairs
	Key Maintenance Policy
	Key- and zone-signing keys.

	Creating the keys

	Zone-signing
	Caching forwarder configuration
	Zone Re-Signing
	Troubleshooting Signed Zones
	Possible problems

	Delegating of signing authority; becoming globally secure
	Introduction
	Practical steps
	Possible problems
	Registering with a DLV registry

	Rolling keys
	DNS traversal
	"Pre-Publish" and "Double Signature" rollovers
	Tools
	ZSK rollover
	ZSK preparation (production phase)
	ZSK rollover (phase1)
	ZSK Cleanup (phase2)
	Modifying zone data during a rollover

	Key-signing key rollovers
	KSK preparation (production phase)
	ZSK rollover (phase 1)
	KSK cleanup (phase 2)
	Multiple KSKs

	II Securing communication between Servers
	Securing zone transfers
	Introduction
	Generating a TSIG key
	Generating a TSIG secret with dnssec-keygen
	Other ways to generate secrets

	Configuring TSIG keys
	Primary servers configuration of TSIG
	Secondary servers configuration of TSIG
	Securing the NOTIFY message too
	Troubleshooting TSIG configuration
	Possible problems
	Timing problems
	Multiple server directives

	III Troubleshooting tools
	Using drill for troubleshooting
	Using dig for troubleshooting
	DNSSEC tools

	IV Appendices
	BIND installation
	Estimating zone size increase
	Generating random numbers
	Perl's Net::DNS::SEC library

