DNSSEC Deployment

Presented by Olaf Kolkman (NLnet Labs) and Alain Aina(TRS)

Rabat Morocco, June 1, 2008

Presentation roadmap

• Overview of problem space

DNSSEC aware provisioning

- Architectural changes to allow for DNSSEC deployment
- Deployment tasks
 - Key maintenance
 - DNS server infrastructure
 - Providing secure delegations

Rabat, Morocco, June I, 2008

DNSSEC deployment tasks

- Key maintenance policies and tools
 - Private Key use and protection
 - Public key distribution
- Zone signing and integration into the provisioning chain
- DNS server infrastructure
- Secure delegation registry changes
 - Interfacing with customers

Presentation roadmap

- Overview of problem space
 - Architectural changes to allow for DNSSE® aware provisioning deployment
- Deployment tasks
 - Key maintenance
 - DNS server infrastructure
 - Providing secure delegations

Key Maintenance

- DNSSEC is based on public key cryptography
 - Data is signed using a private key
 - It is validated using a public key

Operational problems:

- Dissemination of the public key
- Private key has a 'best before' date
 - Keys change, and the change has to disseminate

Public Key Dissemination

- In theory only one trust-anchor needed that of the root
 - How does the root key get to the end user?
 - How is it rolled?
- In absence of hierarchy there will be many trustanchors
 - How do these get to the end-users?
 - How are these rolled?
- These are open questions, making early deployment difficult.

Public Key Dissemination at RIPE NCC

In absence of a signed parent zone and automatic rollover:

- Trust anchors are published on an "HTTPS" secured website
- Trust anchors are signed with the RIPE NCC public keys
- Trust anchor will be rolled twice a year (during early deployment)
- Announcements and publications are always signed by x.509 or PGP

Key Management

- There are many keys to maintain
 - Keys are used on a per zone basis
 - Key Signing Keys and Zone Signing Keys
 - During key rollovers there are multiple keys
 - In order to maintain consistency with cached DNS data [RFC4641]
- Private keys need shielding

Approaches

- Use of a smart card to store the KSK
 - http://www.iis.se/pdf/dnssec-techenv-en.pdf
- The use of hardware signers and management software
 - Steep learning curve, write your own interfaces
 - https://www.centr.org/docs/2007/05/Tech16_9_Dickinson.pdf
 - http://www.nlnetlabs.nl/publications/hsm/index.html

Example implementation

 Based on Net::DNS::SEC frontend to the BIND dnssec tools

Private Key Maintenance Basic Architecture

Rabat, Morocco, June I, 2008

Maintaining Keys and Signing Zones

- The KeyDB maintains the private keys
 - It 'knows' rollover scenarios
 - UI that can create, delete, roll keys without access to the key material
 - Physically secured
- The signer ties the Key DB to a zone
 - Inserts the appropriate DNSKEYs
 - Signs the the zone with appropriate keys
- Strong authentication

Private Key Maintenance The software

- Perl front-end to the BIND dnssec-signzone and dnssec-keygen tools
- Key pairs are kept on disc in the "BIND format"
- Attribute files containing human readable information
 - One can always bail out and sign by hand.
- Works in the RIPE NCC environment, is a little rough edged but available via the www.ripe.net/disi

\$ maintkeydb create KSK RSASHA1 2048 example.net Created 1 key for example.net \$ maintkeydb create ZSK RSASHA1 1024 example.net Created 2 keys for example.net \$ dnssigner example.net Output written to :example.net.signed

\$ maintkeydb rollover zsk-stage1 RSASHA1 example.net

Presentation roadmap

• Overview of problem space

DNSSEC aware provisioning

- Architectural changes to allow for DNSSEC deployment
- Deployment tasks
 - Key maintenance
 - DNS server infrastructure
 - Providing secure delegations

http://www.nlnetlabs.nl/

Infrastructure

- One needs primary and secondary servers to be DNSSEC protocol aware
- We had a number of concerns about memory CPU and network load
 - Research done and published as RIPE 352

Conclusion from RIPE 352

- CPU, Memory and Bandwidth usage increase are not prohibitive for deployment of DNSSEC on k.root-servers.net and ns-pri.ripe.net
- Bandwidth increase is caused by many factors
 - Hard to predict but fraction of DO bits in the queries is an important factor
- CPU impact is small, Memory impact can be calculated
- Don't add DNSKEY RR set in additional

Presentation roadmap

- Architectural changes to allow for DNSSEC deployment
- Deployment tasks
 - Key maintenance
 - DNS server infrastructure
 - Providing secure delegations

Parent-Child Key Exchange

- In the DNS the parent signs the "Delegations Signer" RR
 - A pointer to the next key in the chain of trust

\$ORIGIN kids.net.

http://www.nlnetlabs.nl/

Underlying Ideas

- The DS exchange is the same process as the NS exchange
 - Same authentication/authorization model
 - Same vulnerabilities
 - More sensitive to mistakes
- Integrate the key exchange into existing interfaces
 - Customers are used to those
- Include checks on configuration errors
 - DNSSEC is picky
- Provide tools
 - To prevent errors and guide customers

Questions and Discussion