Hands On UNIX I

Dorcas Muthoni

IAfNOGI

Processes

A running instance of a program is called a "process"
« |dentified by a numeric process id (pid)

- unique while process is running; will be re-used some
time after it terminates

 Has its own private memory space

- not accessible by other processes; not even other
Instances of the same program

(AfNOG

What does UNIX give a process?

A table of environment variables

- Just a bunch of name=value settings
- kept in memory (process gets own private copy)

A table of open files
- 0: standard input
- 1: standard output
- 2: standard error

A set of argument strings

- e.g. what you put after the command name
THAT'S ALL!!

(AfNOG

The shell: a simple interface

The shell lets you start processes

- and waits for them to finish, unless you run them in
the "background"

The shell lets you set environment variables
The shell lets you set up file descriptors

- Normally stdin is connected to your keyboard and
stdout/stderr to your screen, but you can override

The shell lets you pass arguments

(AfNOG

Shell expansion

The shell performs processing on your command
line before starting the program

Splits line into words (cmd, argl, arg2,...)
Searches for cmd in PATH if required
Performs various types of argument expansion

- See exercise

(AfNOG

The shell itself runs as a process

« A shell can start another shell
« A shell has its own environment

- e.g. it uses the PATH setting to locate programs
- It copies the environment to its children
« A shell has stdin/stdout/stderr

- You can run a non-interactive shell, i.e. a script
- Examples include periodic system tidying

 log rotation
* rebuilding of the locate database
» rebuilding of the man page index

(AfNOG

How are new processes started

The current processes “clones” itself via the fork()
call

The fork'ed copy is called the child

- i1t shares all the characteristics of the parent, including
memory, open files, etc...

The child replaces itself by calling the new program
to run via exec()

|
fork()

[\
parent child

exec()

(AfNOG

Once a process has started...

It can make "system calls" to the Kernel as needed,
e.qg. to

- read and write data

- open and close files

- start new child processes (known as "fork") ...etc
Using its pid, you can send it a "signal", e.qg.

- Request to terminate

- Request to suspend (stop temporarily) or restart
- Certain system events also send signals
When it ends, returns 'exit code' (0-127)

- to parent (the process which started it)
(AfNOG

Process control from the shell

For a "foreground" process

- Ctrl-C = terminate
- Ctrl-Z = suspend **
Show all processes
- PS auxw
Send a signal to any process
- kill [-sig] pid
More advanced job control
- jobs = list all jobs (children) started by this shell
- fg %n = resume in foreground **

- bg %n = resume in background

(AfNOG

Summary

Processes identified by pid
Each process at start gets 3 things:

- Environment variables, e.g. HOME="/home/you"
- Open files

- Arguments

You can send signals to a running process

At end it returns a numeric exit code

Shell gives you control of these things

{E._mm;]

Practical Exercise 1

IAfNOGI

Processes and security

Each process runs with set privileges

- effective uid

- effective gid

- supplementary groups

Some operations are only available to root

- e.qg. bind socket to port below 1024
- e.g. shut down system

A process running as root (euid=0) can change to any
other uid - but not back again

Other processes cannot change uid at all!

(AfNOG]

How do users change passwords?

Note that /etc/master.passwd is only readable and
writable by root

 The '‘passwd' program has special privileges, it is marked
"setuid root"

 Whenever a user starts the 'passwd' program, kernel
gives it euid=root

- It can then change the user's password

e setuid programs must be written very carefully to avoid
security holes

« Don't fiddle with setuid bits

(AfNOG

Aside...

« |t's really useful to think of commands in pairs

- The command which shows a setting and the
command which changes that setting

« Example:

- pwd shows the current working directory
- ¢d changes the current working directory
* Follow the 3-step system for changes

- Check things are how you think they are
- Make the change
- Check things have changed as you expected

The Virtual Filesystem (VFS)

All filesystems appear in a single tree

Must have a root device -/

Can attach other devices at other points

At bootup, everything in /etc/fstab is mounted

- except lines marked 'noauto’

(AfNOG

Key VFS commands

e Show status

- mount
- df
« Attach device

- mount -t cd9660 /dev/acdO /cdrom

« /cdrom is called the "mount point"
e it's just an empty subdirectory

« after mounting, the filesystem contents appear
here

« Detach device

- umount /cdrom

(AfNOG

L

Other devices

Formatting a floppy disk

- fdformat /dev/fd0O
- newfs msdos -L myfloppy /dev/fd0
Mounting a floppy disk

- mount -t msdos /dev/fd0 /mnt
USB pen

- mount -t msdos /dev/da0sl /mnt
» typical example
 look in /var/log/messages to check device
« use 'fdisk /dev/daO0' to look at slices

(AfNOG

Filesystem safety

DON'T remove any media until it has been
unmounted

- Otherwise, filesystem can be corrupted

Kernel won't let you unmount a filesystem if it is in
use

- Use 'fstat’ to find processes using it
ALWAYS shut down properly

Filesystem repair tool is called "fsck"

(AfNOG

