Cisco Router Configuration Basics

Mark Tinka & Isatou Jah

Router Components

- ROM
 - Starts and maintains the router
- Bootstrap
 - Stored in ROM microcode brings router up during initialisation, boots router and loads the IOS.
- POST Power On Self Test
 - Stored in ROM microcode checks for basic functionality of router hardware and determines which interfaces are present
- ROM Monitor
 - Stored in ROM microcode used for manufacturing, testing and troubleshooting
- Mini-IOS
 - a.k.a RXBOOT/boot loader by Cisco small IOS ROM used to bring up an interface and load a Cisco IOS into flash memory from a TFTP server; can also perform a few other maintenance operations

Router Components

RAM

 Holds packet buffers, ARP cache, routing table, software and data structure that allows the router to function; running-config is stored in RAM, as well as the decompressed IOS in later router models

Flash memory

Holds the IOS; is not erased when the router is reloaded; is an EEPROM [Electrically Erasable Programmable Read-Only Memory] that can be erased and reprogrammed repeatedly through an application of higher than normal electric voltage

NVRAM

Non-Volatile RAM - stores router startup-config; is not erased when router is reloaded

Router Components

- Config-Register
 - controls how router boots;
 - value can be seen with "show version"
 command;
 - is typically 0x2102, which tells the router to load the IOS from flash memory and the startup-config file from NVRAM
 - 0x2142, tells the router to go into Rommon mode

Purpose of the Config Register

- Reasons why you would want to modify the config-register:
 - Force the router into ROM Monitor Mode
 - Select a boot source and default boot filename
 - Enable/Disable the Break function
 - Control broadcast addresses
 - Set console terminal baud rate
 - Load operating software from ROM
 - Enable booting from a TFTP server

System Startup

POST

loaded from ROM and runs diagnostics on all router hardware

Bootstrap

locates and loads the IOS image; default setting is to load the IOS from flash memory

IOS

locates and loads a valid configuration from NVRAM; file is called startup-config; only exists if you copy the running-config to NVRAM

startup-config

if found, router loads it and runs embedded configuration; if not found, router enters setup mode

Overview

- Router configuration controls the operation of the router's:
 - Interface IP address and netmask
 - Routing information (static, dynamic or default)
 - Boot and startup information
 - Security (passwords and authentication)

Where is the Configuration?

- Router always has two configurations:
- Running configuration
 - In RAM, determines how the router is currently operating
 - Is modified using the configure command
 - To see it: show running-config
- Startup confguration
 - In NVRAM, determines how the router will operate after next reload
 - Is modified using the copy command
 - To see it: show startup-config

Where is the Configuration?

- Can also be stored in more permanent places:
 - External hosts, using TFTP (Trivial File Transfer Protocol)
 - In flash memory in the router
- Copy command is used to move it around

copy run start copy run tftp

copy start tftp copy tftp start

copy flash start copy start flash

Router Access Modes

- User EXEC mode limited examination of router
 - Router>
- Privileged EXEC mode detailed examination of router, debugging, testing, file manipulation (router prompt changes to an octothorp)
 - Router#
- ROM Monitor useful for password recovery & new IOS upload session
- Setup Mode available when router has no startup-config file

External Configuration Sources

- Console
 - Direct PC serial access
- Auxiliary port
 - Modem access
- Virtual terminals
 - Telnet/SSH access
- □ TFTP Server
 - Copy configuration file into router RAM
- Network Management Software
 - e.g., CiscoWorks

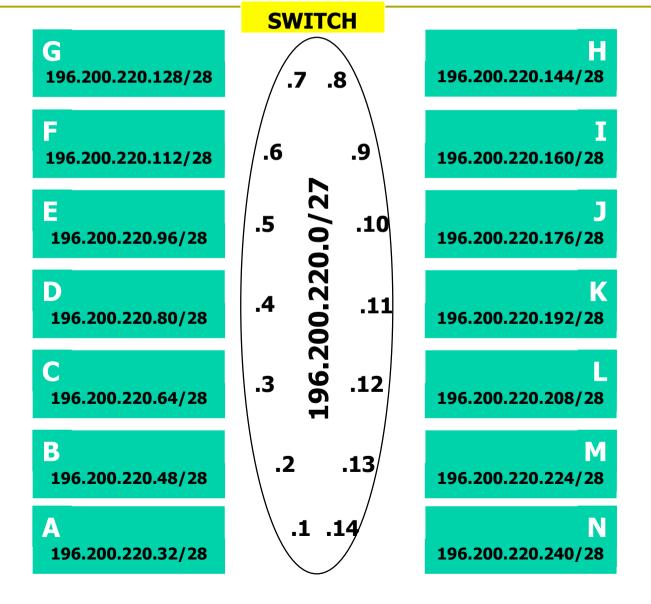
Changing the Configuration

- Configuration statements can be entered interactively
 - changes are made (almost) immediately, to the running configuration
- Can use direct serial connection to console port, or
- Telnet/SSH to vty's ("virtual terminals"), or
- Modem connection to aux port, or
- Edited in a text file and uploaded to the router at a later time via tftp; copy tftp start or config net

Logging into the Router

Connect router to console port or telnet to router

```
router>
router>enable
password
router#
router#?
```


- Configuring the router
 - Terminal (entering the commands directly) router# configure terminal router(config)#

Connecting your FreeBSD Machine to the Router's Console Port

- Connect your machine to the console port using the rollover serial cable provide
- Go to /etc/remote to see the device configured to be used with "tip". you will see at the end, a line begin with com1

```
bash$ tip com1 <enter>
router>
router>enable
router#
```

Address Assignments

New Router Configuration Process

- Load configuration parameters into RAM
 - Router#configure terminal
- Personalize router identification
 - Router#(config)hostname RouterA
- Assign access passwords
 - RouterA#(config)line console 0
 - RouterA# (config-line) password cisco
 - RouterA# (config-line) login

New Router Configuration Process

- Configure interfaces
 - RouterA#(config)interface fastethernet 0/0
 - RouterA#(config-if)ip address n.n.n.n
 m.m.m
 - RouterA#(config-if)no shutdown
- Configure routing/routed protocols
- Save configuration parameters to NVRAM
 - RouterA#copy running-config startupconfig
 - (Or write memory)

Router Prompts – How to tell where you are on the router

- You can tell in which area of the router's configuration you are by looking at the router prompts:
 - Router> => USER prompt mode
 - Router# => PRIVILEGED EXEC prompt mode
 - Router(config) => terminal configuration prompt
 - Router(config-if) => interface configuration prompt
 - Router(config-subif) => sub-interface configuration prompt

Router Prompts – How to tell where you are on the router

- You can tell in which area of the router's configuration you are by looking at the router prompts:
 - Router(config-route-map)# => route-map configuration
 prompt
 - Router(config-router)# => router configuration prompt
 - Router(config-line)# => line configuration prompt
 - rommon 1> => ROM Monitor mode

Configuring your Router

- Set the enable (secret) password:
 - router(config)# enable secret "your pswd"
 - This MD5 encrypts the password
 - The old method was to use the enable password command. But this is not secure (weak encryption) and is ABSOLUTELY NOT RECOMMENDED. DO NOT USE!
- Ensure that all passwords stored on router are (weakly) encrypted rather than clear text:
 - router(config)# service password-encryption

Configuring Your Router

To configure interface you should go to interface configuration prompt

```
router(config)# interface fastethernet0/0
router(config-if)#
```

- Save your configuration
 - router#copy running-config startupconfig

Configuring Your Router

```
Global:
  enable secret si@fnog
Interface:
  interface fastethernet 0/0
   ip address n.n.n.n m.m.m.m
Router:
  router ospf 1
   network n.n.n.n w.w.w.w area 0
Line:
  line vty 0 4
```

Global Configuration

- Global configuration statements are independent of any particular interface or routing protocol, e.g.:
 - hostname routerK
 - enable secret track-si
 - service password-encryption
 - logging facility local0
 - logging n.n.n.n

Global Configuration

■ IP specific global configuration statements:

```
ip classless
ip name-server n.n.n.n
```

Static Route Creation

```
ip route n.n.n.n m.m.m.m g.g.g.g
n.n.n.n = network block
m.m.m.m = network mask denoting block size
g.g.g.g = next hop gateway destination packets
are sent to
```

The NO Command

Used to reverse or disable commands e.g.

```
ip domain-lookup
no ip domain-lookup

router ospf 1
no router ospf 1

ip address 1.1.1.1 255.255.255.0
no ip address
```

Interface Configuration

- □ Interfaces are named by slot/type; *e.g.*:
 - ethernet0, ethernet1,... ethernet5/1
 - Serial0/0, serial1 ... serial3
- And can be abbreviated:
 - ethernet0 or eth0 or e0
 - Serial0/0 or ser0/0 or s0/0

Interface Configuration

Administratively enable/disable the interface

```
router(config-if)#no shutdown
router(config-if)#shutdown
```

Description

```
router(config-if)#description ethernet
link to admin building router
```

Global Configuration Commands

Cisco global config should always include:

```
ip classless
ip subnet-zero
no ip domain-lookup
```

Cisco interface config should usually include:

```
no shutdown
no ip proxy-arp
no ip redirects
no ip directed-broadcast
```

Industry recommendations are at http://www.cymru.com/Documents

Looking at the Configuration

- □ Use "show running-configuration" to see the current configuration
- Use "show startup-configuration" to see the configuration in NVRAM, that will be loaded the next time the router is rebooted or reloaded

Interactive Configuration

- □ Enter configuration mode, using "configure terminal"
 - Often abbreviated to "conf t"
- Prompt gives a hint about where you are:

```
router#configure terminal
router(config) #ip classless
router(config) #ip subnet-zero
router(config) #int fasteth0/1
router(config-if) #ip addr n.n.n.n m.m.m.m
router(config-if) #no shut
router(config-if) #^Z
```

Storing the Configuration on a Remote System

Requires: 'tftpd' on a unix host; destination file must exist before the file is written and must be world writable...

```
router#copy run tftp
Remote host []? n.n.n.n
Name of configuration file to write [hoste2-rtr-
    confg]? hoste2-rtr-confg
Write file hoste2-rtr-confg on Host n.n.n.n?
    [confirm]
Building configuration...
Writing hoste2-rtr-confg !![OK]
router#
```

Restoring the Configuration from a Remote System

Use 'tftp' to pull file from UNIX host, copying to runningconfig or startup-config

```
router#copy tftp start
Address of remote host [255.255.255.255]? n.n.n.n
Name of configuration file [hoste2-rtr-confg]?
Configure using hostel-rtr-confg from n.n.n.n?
  [confirm]
Loading hoste2-rtr-confg from n.n.n.n (via
  Ethernet0/0): !
[OK - 1005/128975 bytes]
[OK]
hoste2-rtr# reload
```

- IOS has a built-in help facility;
 - use "?" to get a list of possible configuration statements
- "?" after the prompt lists all possible commands:
 - router#?
- "<partial command> ?" lists all possible subcommands, e.g.:
 - router#show ?
 - router#show ip ?

"<partial command>?" shows all possible command completions

```
router#con?
configure connect
```

This is different:

This also works in configuration mode: router(config) #ip a? accounting-list accounting-threshold accounting-transits address-pool alias as-path router(config)#int faste0/0 router(config-if)#ip a? access-group accounting address

Can "explore" a command to figure out the syntax:

```
router(config-if) #ip addr ?
   A.B.C.D IP address

router(config-if) #ip addr n.n.n.n ?
   A.B.C.D IP subnet mask

router(config-if) #ip addr n.n.n.n m.m.m.m ?
   secondary Make this IP address a secondary address
   <cr>
   router(config-if) #ip addr n.n.n.n m.m.m.m
router(config-if) #ip addr n.n.n.n m.m.m.m
```

Getting Lazy Online Help

TAB character will complete a partial word

```
hostel-rtr(config) #int<TAB>
hostel-rtr(config) #interface et<TAB>
hostel-rtr(config) #interface ethernet 0
hostel-rtr(config-if) #ip add<TAB>
hostel-rtr(config-if) #ip address n.n.n.n m.m.m.m
```

Not really necessary; partial commands can be used:

```
router#conf t
router(config)#int e0/0
router(config-if)#ip addr n.n.n.n
```

Getting Lazy Online Help

Command history

- IOS maintains short list of previously typed commands
- up-arrow or `^p' recalls previous command
- down-arrow or '^n' recalls next command

Line editing

- left-arrow, right-arrow moves cursor inside command
- '^d' or backspace will delete character in front of cursor
- Ctrl-a takes you to start of line
- Ctrl-e takes you to end of line

Connecting your FreeBSD machine to the Router's Console port

- Look at your running configuration
- Configure an IP address for e0/0 depending on your table
 - use n.n.n.n for table A etc
- Look at your running configuration and your startup configuration
- Check what difference there is, if any

Deleting your Router's Configuration

To delete your router's configuration

```
Router#erase startup-config
OR
Router#write erase
Router#reload
```

 Router will start up again, but in setup mode, since startup-config file does not exists

Using Access Control Lists (ACLs)

- Access Control Lists used to implement security in routers
 - powerful tool for network control
 - filter packets flow in or out of router interfaces
 - restrict network use by certain users or devices
 - deny or permit traffic

Rules followed when comparing traffic with an ACL

- Is done in sequential order; line 1, line 2, line 3 etc
- Is done in the direction indicated by the keyword in or out
- Is compared with the access list until a match is made; then NO further comparisons are made
- There is an implicit "deny" at the end of each access list; if a packet does not match in the access list, it will be discarded

Using ACLs

- Standard IP Access Lists
 - ranges (1 99) & (1300-1999)
 - simpler address specifications
 - generally permits or denies entire protocol suite
- Extended IP Access Lists
 - ranges (100 199) & (2000-2699)
 - more complex address specification
 - generally permits or denies specific protocols
- There are also named access-lists
 - Standard
 - Extended
 - Named access-lists easier to manage as lines may be deleted or added by sequence number. NO need to delete and reinstall the entire ACL. Not supported with all features.

ACL Syntax

- Standard IP Access List Configuration Syntax
 - access-list access-list-number {permit | deny}
 source {source-mask}
 - ip access-group access-list-number {in | out}
- Extended IP Access List Configuration Syntax
 - access-list access-list-number {permit | deny}
 protocol source {source-mask} destination
 {destination-mask}
 - ip access-group access-list-number {in | out}
- Named IP Access List Configuration Syntax
 - ip access-list {standard | extended} {name |
 number}

Where to place ACLs

- Place Standard IP access list close to destination
- Place Extended IP access lists close to the source of the traffic you want to manage

What are Wild Card Masks?

- Are used with access lists to specify a host, network or part of a network
- To specify an address range, choose the next largest block size e.g.
 - to specify 34 hosts, you need a 64 block size
 - to specify 18 hosts, you need a 32 block size
 - to specify 2 hosts, you need a 4 block size

What are Wild Card Masks?

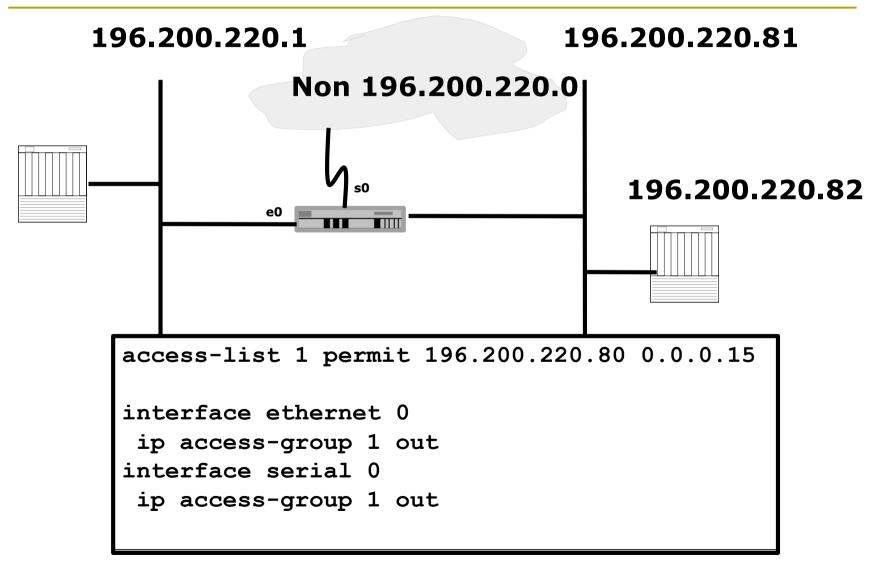
- Are used with the host/network address to tell the router a range of addresses to filter
- Examples:
 - To specify a host:
 - □ 196.200.220.1 0.0.0.0
 - To specify a small subnet:
 - □ 196.200.220.8 196.200.220.15 (would be a /29)
 - □ Block size is 8, and wildcard is always one number less than the block size
 - □ Cisco access list then becomes 196.200.220.8 0.0.0.7
 - To specify all hosts on a /24 network:
 - **196.200.220.0 0.0.0.255**

What are Wild Card Masks?

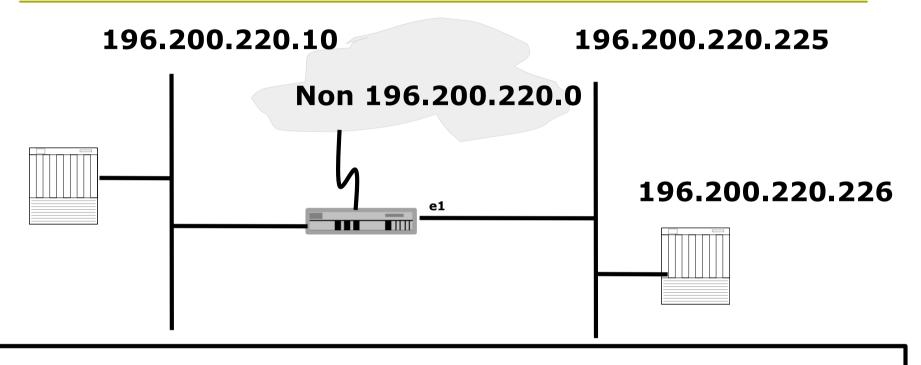
- Short cut method to a quick calculation of a network subnet to wildcard:
 - 255 {netmask bits on subnet mask}
- Examples:
 - to create wild card mask for 196.200.220.160 255.255.255.240
 - □ 196.200.220.160 0.0.0.15 {255 240}
 - to create wild card mask for 196.200.220.0 255.255.252.0
 - 196.200.220.0 0.0.3.255

ACL Example

- Pouter(config) #access-list <access-listnumber> {permit|deny} {test conditions}
- □ Router(config)#int eth0/0
- e.g., check for IP subnets 196.200.220.80 to 196.200.220.95
 - **1**96.200.220.80 0.0.0.15


ACL Example

- Wildcard bits indicate how to check corresponding address bit
 - 0=check or match
 - 1=ignore
- Matching Any IP Address
 - 0.0.0.0 255.255.255.255
 - or abbreviate the expression using the keyword 'any'
- Matching a specific host
 - **1**96.200.220.8 0.0.0.0
 - or abbreviate the wildcard using the IP address preceded by the keyword 'host'


Permit telnet access only for my network

```
access-list 1 permit 196.200.220.192 0.0.0.15
access-list 1 deny any
line vty 0 4
   access-class 1 in
```

Standard IP ACLs Permit only my network

Extended IP ACLs: Deny FTP access through Interface E1

access-list 101 deny tcp 196.200.220.0 0.0.0.15 196.200.220.224 0.0.0.15 eq 21 access-list 101 deny tcp 196.200.220.0 0.0.0.15 196.200.220.224 0.0.0.15 eq 20 access-list 101 permit ip 196.200.220.0 0.0.0.15 0.0.0.0 255.255.255.255 interface ethernet 1 ip access-group 101 out

Prefix Lists

- Cisco first introduced prefix lists in IOS 12.0
- Used to filter routes, and can be combined with route maps for route filtering and manipulation
- Provide much higher performance than access control lists and distribute lists
- Are much easier to configure and manage
 - Using CIDR address/mask notation
 - Sequence numbers (as in named access-lists)

Prefix Lists

- Prefix lists have an implicit "deny" at the end of them, like access control lists
- Are quicker to process than regular access control lists
- If you do have IOS 12.0 or later, it is STRONGLY RECOMMENDED to use prefix lists rather than access lists for route filtering and manipulation

Prefix List Configuration Syntax

Prefix list configuration syntax

```
config t
  ip prefix-list list-name {seq seq-
  value} {permit|deny} network/len {ge
  ge-value} {le le-value}
```

- list-name name to use for the prefix list
- seq-value numeric value of the sequence; optional
- network/len CIDR network address notation

Prefix List Configuration Syntax

- Prefix list configuration Syntax
 - ge-value "from" value of range; matches equal or longer prefixes (more bits in the prefix, smaller blocks of address space)
 - le-value "to" value of range; matches equal or shorter prefixes (less bits in the prefix, bigger blocks of address space)

Prefix List Configuration Example

- □ To deny a single /28 prefix:
 ip prefix-list SIafnog deny 196.200.220.192/28
- To accept prefixes with a prefix length of /8 up to /24:

```
ip prefix-list test1 permit 196.0.0.0/8 le 24
```

To deny prefixes with a mask greater than 25 in 196.200.220.0/24:

```
ip prefix-list test2 deny 196.200.220.0/24 ge 25
```

To allow all routes:

```
ip prefix-list test3 permit 0.0.0.0/0 le 32
```

Disaster Recovery – ROM Monitor

- ROM Monitor is very helpful in recovering from emergency failures such as:
 - Password recovery
 - Upload new IOS into router with NO IOS installed
 - Selecting a boot source and default boot filename
 - Set console terminal baud rate to upload new IOS quicker
 - Load operating software from ROM
 - Enable booting from a TFTP server

Getting to the ROM Monitor

- Windows using HyperTerminal for the console session
 - Ctrl-Break
- FreeBSD/UNIX using Tip for the console session
 - < < Enter>, then ~# OR
 - Ctrl-], then Break or Ctrl-C
- Linux using Minicom for the console session
 - Ctrl-A F
- MacOS using Zterm for the console session
 - Apple B

Disaster Recovery: How to Recover a Lost Password

- Connect your PC's serial port to the router's console port
- Configure your PC's serial port:
 - 9600 baud rate
 - No parity
 - 8 data bits
 - 1 stop bit
 - No flow control

Disaster Recovery: How to Recover a Lost Password

- Your configuration register should be 0x2102; use "show version" command to check
- Reboot the router and apply the Breaksequence within 60 seconds of powering the router, to put it into ROMMON mode

```
Rommon 1>confreg 0x2142
Rommon 2>reset
```

Router reboots, bypassing startup-config file

Disaster Recovery: How to Recover a Lost Password

```
Type Ctrl-C to exit Setup mode
Router>enable
Router#copy start run (only!!!)
Router#show running
Router#conf t
Router (config) enable secret forgotten
Router(config)int e0/0...
Router(config-if) no shut
Router (config) config-register 0x2102
Router(config)Ctrl-Z or end
Router#copy run start
Router#reload
```

Basic IPv6 Configuration

IPv6 Configuration

Enabling IPv6:

```
Router(config)# ipv6 unicast-routing
```

Disable Source Routing

```
Router(config) # no ipv6 source route
```

Activating IPv6 CEF

```
Router(config)# ipv6 cef
```

IPv6 Configuration - Interfaces

- Configuring interfaces:
 - A global or unique local IPv6 address:

```
Router(config-if)# ipv6 address X:X..X:X/prefix
```

An EUI-64 based IPv6 address (not a good idea on a router):

```
Router(config-if)# ipv6 address X:X::/prefix eui-64
```

IPv6 Configuration

- Note that by configuring any IPv6 address on an interface, you will see a global or unique-local IPv6 address and a link-local IPv6 address on the interface
 - Link-local IPv6 address format is:

FE80::interface-id

The local-link IPv6 address is constructed automatically by concatenating FE80 with Interface ID as soon as IPv6 is enabled on the interface:

Router(config-if)# ipv6 enable

IOS IPv6 Interface Status – Link Local

```
Router1# conf t
Router1(config) # ipv6 unicast-routing
Router1(config)# ^Z
Router1#sh ipv6 interface
Ethernet0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::A8BB:CCFF:FE00:1E00
 No global unicast address is configured
  Joined group address(es):
    FF02::1
   FF02::2
   FF02::1:FF00:1E00
 MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
```

IOS IPv6 Interface Status

```
Router1#sh ipv6 interface eth0/0
Ethernet0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::A8BB:CCFF:FE00:1E00
 Global unicast address(es):
    2001:DB8::A8BB:CCFF:FE00:1E00, subnet is 2001:DB8::/64 [EUI]
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF00:1E00
 MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
 ND advertised reachable time is 0 milliseconds
 ND advertised retransmit interval is 0 milliseconds
 ND router advertisements are sent every 200 seconds
  ND router advertisements live for 1800 seconds
 Hosts use stateless autoconfig for addresses.
```

IPv6 Configuration – Miscellaneous

Disable IPv6 redirects on interfaces

```
interface fastethernet 0/0
no ipv6 redirects
```

■ Nameserver, syslog etc can be IPv6 accessible

```
ip nameserver 2001:db8:2:1::2
ip nameserver 10.1.40.40
```

Static Routing – IOS

Syntax is:

```
ipv6 route ipv6-prefix/prefix-length {ipv6-
  address | interface-type interface-number}
  [admin-distance]
```

Static Route

```
ipv6 route 2001:db8::/64 2001:db8:0:CC00::1 110
```

Routes packets for network 2001:db8::/64 to a networking device at 2001:db8:0:CC00::1 with an administrative distance of 110

Cisco Router Configuration Basics

Questions?