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Why use UNIX? 

● Scalability and reliability
– has been around for many years
– works well under heavy load

● Flexibility
– emphasises small, interchangeable components

● Manageability
– remote logins rather than GUI
– scripting

● Security
– Windows has a long and sad security history
– Unix and its applications are not blameless though



Is free software really any good?!

● The people who write it also use it
● Source code is visible to all

– The quality of their work reflects on the author personally
– Others can spot errors and make improvements

● What about support?
– documentation can be good, or not so good
– mailing lists; search the archives first
– if you show you've invested time in trying to solve a 

problem, others will likely help you
– http://www.catb.org/~esr/faqs/smart-questions.html



Is free software really any good?

● Core Internet services run on free software
– BIND Domain Name Server
– Apache web server (secure SSL as well)
– Sendmail, Postfix, Exim for SMTP/POP/IMAP
– MySQL and PostgreSQL databases
– PHP, PERL, C languages

● Several very high profile end-user projects
– Firefox, original Netscape browser
– OpenOffice
– Thunderbird



First topics:

● Unix birds-eye overview
● Partitioning
● FreeBSD installation





Kernel

● The "core" of the operating system
● Device drivers

– communicate with your hardware
– block devices, character devices, network devices, 

pseudo devices
● Filesystems

– organise block devices into files and directories
● Memory management
● Timeslicing (multiprocessing)
● Networking stacks - esp. TCP/IP
● Enforces security model



Shell

● Command line interface for executing 
programs
– DOS/Windows equivalent: command.com or 

command.exe
● Choice of similar but slightly different shells

– sh: the "Bourne Shell". Standardised in POSIX
– csh: the "C Shell". Not standard but includes command 

history
– bash: the "Bourne-Again Shell". Combines POSIX 

standard with command history. But distributed under 
GPL (more restrictive than BSD licence)



User processes

● The programs that you choose to run
● Frequently-used programs tend to have short 

cryptic names
– "ls" = list files
– "cp" = copy file
– "rm" = remove (delete) file

● Lots of stuff included in the base system
– editors, compilers, system admin tools

● Lots more stuff available to install too
– packages / ports



System processes

● Programs that run in the background; also 
known as "daemons"

● Examples:
– cron: executes programs at certain times of day
– syslogd: takes log messages and writes them to files
– inetd: accepts incoming TCP/IP connections and starts 

programs for each one
– sshd: accepts incoming logins
– sendmail (other MTA daemon like Exim): accepts 

incoming mail



Security model

● Numeric IDs
– user id (uid 0 = "root", the superuser)
– group id
– supplementary groups

● Mapped to names
– /etc/passwd, /etc/group (plain text files)
– /etc/pwd.db (fast indexed database)

● Suitable security rules enforced
– e.g. you cannot kill a process running as a different user, 

unless you are "root"



Key differences to Windows

● Unix commands and filenames are CASE-
SENSITIVE

● Path separator: / for Unix, \ for Windows
● Windows exposes a separate filesystem tree 

for each device
– A:\foo.txt, C:\bar.txt, E:\baz.txt
– device letters may change, and limited to 26

● Unix has a single 'virtual filesystem' tree
– /bar.txt, /mnt/floppy/foo.txt, /cdrom/baz.txt
– administrator choses where each FS is attached



Any questions?

●?



Some reminders about PC architecture

● When your computer turns on, it starts a 
bootup sequence in the BIOS

● The BIOS locates a suitable boot source 
(e.g. floppy, harddrive, CD-ROM, network)

● Disks are divided into 512-byte blocks
● The very first block is the MBR (Master Boot 

Record)
● The BIOS loads and runs the code in the 

MBR, which continues the bootup sequence



Partitioning

● The MBR contains a table allowing the disk 
to be divided into (up to) four partitions

● Beyond that, you can nominate one partition 
as an "extended partition" and then further 
subdivide it into "logical partitions"

● FreeBSD has its own partitioning system, 
because Unix predates the PC

● FreeBSD recognises MBR partitions, but 
calls them "slices" to avoid ambiguity



FreeBSD partitions

● Partitions (usually) sit within a slice
● Partitions called a,b,c,d,e,f,g,h
● CANNOT use 'c'

– for historical reasons, partition 'c' refers to the entire slice
● By convention, 'a' is root partition and 'b' is 

swap partition
● 'swap' is optional, but used to extend 

capacity of your system RAM



Simple partitioning: /dev/ad0

MBR Single slice /dev/ad0s1

ad0s1a ad0s1b ad0s1d ad0s1e ad0s1f

/ swap /var /tmp /usr

/  (root partition)    ad0s1a    256MB
    swap partition     ad0s1b    ~ 2 x RAM
/var                   ad0s1d    256MB (+)
/tmp                   ad0s1e    256MB
/usr                   ad0s1f    rest of disk



'Auto' partition does this:

● Small root partition
– this will contain everything not in another partition
– /boot for kernel, /bin, /sbin etc.

● A swap partition for virtual memory
● Small /tmp partition

– so users creating temporary files can't fill up your root 
partition

● Small /var partition
● Rest of disk is /usr

– Home directories are /usr/home/<username>



Issues

● /var may not be big enough
● /usr contains the OS, 3rd party software, and 

your own important data
– If you reinstall from scratch and erase /usr, you will lose 

your own data
● So you might want to split into /usr and /u

– Suggest 4-6GB for /usr, remainder for /u
● Some people prefer a ramdisk for /tmp

# /etc/fstab: 64MB ramdisk
md   /tmp   mfs   -s131072,rw,nosuid,nodev,noatime   0   0

Or, see /etc/rc.conf later today. We can't do this due to limted RAM.



Core directory refresher

● /         (/boot, /bin, /sbin, /etc, maybe /tmp) 
● /var    (Log files, spool, maybe user mail)
● /usr    (Installed software and home dirs)
● Swap (Virtual memory)
● /tmp   (May reside under “/”)

Don't confuse the the “root account” (/root) with 
the “root” partition.d



Note...

● Slicing/partition is just a logical division
● If your hard drive dies, most likely everything 

will be lost
● If you want data security, then you need to 

set up mirroring with a separate drive
– Another reason to keep your data on a separate partition, 

e.g. /u
– Remember, “rm -rf” on a mirror works very well.



Summary: block devices

● IDE (ATAPI) disk drives
– /dev/ad0
– /dev/ad1   ...etc

● SCSI or SCSI-like disks (e.g. USB flash, 
SATA)
– /dev/da0
– /dev/da1   ...etc

● IDE (ATAPI) CD-ROM
– /dev/acd0  ...etc

● Traditional floppy drive
– /dev/fd0

● etc.



Summary

● Slices
– /dev/ad0s1
– /dev/ad0s2
– /dev/ad0s3
– /dev/ad0s4

● Defined in MBR
● What PC heads call 

"partitions"

● BSD Partitions
– /dev/ad0s1a
– /dev/ad0s1b
– /dev/ad0s1d   ...etc
– /dev/ad0s2a
– /dev/ad0s2b
– /dev/ad0s2d   ...etc

● Conventions:
– 'a' is /
– 'b' is swap
– 'c' cannot be used



Any questions?

●?



Installing FreeBSD

● Surprisingly straightforward
● Boot from CD or floppies, runs "sysinstall"
● Slice your disk

– Can delete existing slice(s)
– Create a FreeBSD slice

● Partition
● Choose which parts of FreeBSD distribution 

you want, or "all"
● Install from choice of media

– CD-ROM, FTP, even a huge pile of floppies!



Installing Software in FreeBSD

● Several different methods
– ports
– packages
– source
– binary

● Meta installation wrapper we recommend is 
portupgrade

● We will go in to detail on these methods later 
in the workshop.



How Does FreeBSD Start?

● The BIOS loads and runs the MBR
– The MBR is not part of FreeBSD

● A series of "bootstrap" programs are loaded
– see  “man boot”

– /boot.config  parameters for the boot blocks 
              (optional)

– /boot/boot1   first stage bootstrap file
– /boot/boot2   second stage bootstrap file
– /boot/loader  third stage bootstrap

● Kernel is loaded, and perhaps some modules
– controlled by /boot/loader.conf



How Does FreeBSD Start?

● The root filesystem is mounted
– “root” = “/” or something like “ad0s1a”

● /sbin/init is run and executes the main 
startup script /etc/rc

● This in turn runs other scripts /etc/rc.d/*
– /etc/rc.conf is used to decide whether a service is started or 

not and to specify options.



Finding more information

● Our reference handout
– a roadmap!

● man pages
– esp. when you know the name of the command

● www.freebsd.org
– handbook, searchable website / mail archives

● "The Complete FreeBSD" (O'Reilly)
● comp.unix.shell FAQ

– http://www.faqs.org/faqs/
by-newsgroup/comp/comp.unix.shell.html

● STFW (Search The Friendly Web)
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