
UNIX BootCamp

● AfNOG IX
● May 2008

● Rabat, Morocco

BootCamp Summary Time Table

DayDay TopicTopic InstructorInstructor
Saturday Introduction to UNIX PO

Introduction to commands HA
Introduction to the Unix File System/Hierarchy PR
Privileges HA
Commands, File system and Privileges together PR

Sunday Editing f iles (conf iguration f iles) HA
Editing cont. (More advanced) HA
Introduction to TCP/IP PO
More Networking PR
Summary *

Introduction To UNIX

● AfNOG IX
● May 2008

● Rabat, Morocco

Why use UNIX?

● Scalability and reliability
– has been around for many years
– works well under heavy load

● Flexibility
– emphasises small, interchangeable components

● Manageability
– remote logins rather than GUI
– scripting

● Security
– Windows has a long and sad security history
– Unix and its applications are not blameless though

Is free software really any good?!

● The people who write it also use it
● Source code is visible to all

– The quality of their work reflects on the author personally
– Others can spot errors and make improvements

● What about support?
– documentation can be good, or not so good
– mailing lists; search the archives first
– if you show you've invested time in trying to solve a

problem, others will likely help you
– http://www.catb.org/~esr/faqs/smart-questions.html

Is free software really any good?

● Core Internet services run on free software
– BIND Domain Name Server
– Apache web server (secure SSL as well)
– Sendmail, Postfix, Exim for SMTP/POP/IMAP
– MySQL and PostgreSQL databases
– PHP, PERL, C languages

● Several very high profile end-user projects
– Firefox, original Netscape browser
– OpenOffice
– Thunderbird

First topics:

● Unix birds-eye overview
● Partitioning
● FreeBSD installation

Kernel

● The "core" of the operating system
● Device drivers

– communicate with your hardware
– block devices, character devices, network devices,

pseudo devices
● Filesystems

– organise block devices into files and directories
● Memory management
● Timeslicing (multiprocessing)
● Networking stacks - esp. TCP/IP
● Enforces security model

Shell

● Command line interface for executing
programs
– DOS/Windows equivalent: command.com or

command.exe
● Choice of similar but slightly different shells

– sh: the "Bourne Shell". Standardised in POSIX
– csh: the "C Shell". Not standard but includes command

history
– bash: the "Bourne-Again Shell". Combines POSIX

standard with command history. But distributed under
GPL (more restrictive than BSD licence)

User processes

● The programs that you choose to run
● Frequently-used programs tend to have short

cryptic names
– "ls" = list files
– "cp" = copy file
– "rm" = remove (delete) file

● Lots of stuff included in the base system
– editors, compilers, system admin tools

● Lots more stuff available to install too
– packages / ports

System processes

● Programs that run in the background; also
known as "daemons"

● Examples:
– cron: executes programs at certain times of day
– syslogd: takes log messages and writes them to files
– inetd: accepts incoming TCP/IP connections and starts

programs for each one
– sshd: accepts incoming logins
– sendmail (other MTA daemon like Exim): accepts

incoming mail

Security model

● Numeric IDs
– user id (uid 0 = "root", the superuser)
– group id
– supplementary groups

● Mapped to names
– /etc/passwd, /etc/group (plain text files)
– /etc/pwd.db (fast indexed database)

● Suitable security rules enforced
– e.g. you cannot kill a process running as a different user,

unless you are "root"

Key differences to Windows

● Unix commands and filenames are CASE-
SENSITIVE

● Path separator: / for Unix, \ for Windows
● Windows exposes a separate filesystem tree

for each device
– A:\foo.txt, C:\bar.txt, E:\baz.txt
– device letters may change, and limited to 26

● Unix has a single 'virtual filesystem' tree
– /bar.txt, /mnt/floppy/foo.txt, /cdrom/baz.txt
– administrator choses where each FS is attached

Any questions?

●?

Some reminders about PC architecture

● When your computer turns on, it starts a
bootup sequence in the BIOS

● The BIOS locates a suitable boot source
(e.g. floppy, harddrive, CD-ROM, network)

● Disks are divided into 512-byte blocks
● The very first block is the MBR (Master Boot

Record)
● The BIOS loads and runs the code in the

MBR, which continues the bootup sequence

Partitioning

● The MBR contains a table allowing the disk
to be divided into (up to) four partitions

● Beyond that, you can nominate one partition
as an "extended partition" and then further
subdivide it into "logical partitions"

● FreeBSD has its own partitioning system,
because Unix predates the PC

● FreeBSD recognises MBR partitions, but
calls them "slices" to avoid ambiguity

FreeBSD partitions

● Partitions (usually) sit within a slice
● Partitions called a,b,c,d,e,f,g,h
● CANNOT use 'c'

– for historical reasons, partition 'c' refers to the entire slice
● By convention, 'a' is root partition and 'b' is

swap partition
● 'swap' is optional, but used to extend

capacity of your system RAM

Simple partitioning: /dev/ad0

MBR Single slice /dev/ad0s1

ad0s1a ad0s1b ad0s1d ad0s1e ad0s1f

/ swap /var /tmp /usr

/ (root partition) ad0s1a 256MB
 swap partition ad0s1b ~ 2 x RAM
/var ad0s1d 256MB (+)
/tmp ad0s1e 256MB
/usr ad0s1f rest of disk

'Auto' partition does this:

● Small root partition
– this will contain everything not in another partition
– /boot for kernel, /bin, /sbin etc.

● A swap partition for virtual memory
● Small /tmp partition

– so users creating temporary files can't fill up your root
partition

● Small /var partition
● Rest of disk is /usr

– Home directories are /usr/home/<username>

Issues

● /var may not be big enough
● /usr contains the OS, 3rd party software, and

your own important data
– If you reinstall from scratch and erase /usr, you will lose

your own data
● So you might want to split into /usr and /u

– Suggest 4-6GB for /usr, remainder for /u
● Some people prefer a ramdisk for /tmp

/etc/fstab: 64MB ramdisk
md /tmp mfs -s131072,rw,nosuid,nodev,noatime 0 0

Or, see /etc/rc.conf later today. We can't do this due to limted RAM.

Core directory refresher

● / (/boot, /bin, /sbin, /etc, maybe /tmp)
● /var (Log files, spool, maybe user mail)
● /usr (Installed software and home dirs)
● Swap (Virtual memory)
● /tmp (May reside under “/”)

Don't confuse the the “root account” (/root) with
the “root” partition.d

Note...

● Slicing/partition is just a logical division
● If your hard drive dies, most likely everything

will be lost
● If you want data security, then you need to

set up mirroring with a separate drive
– Another reason to keep your data on a separate partition,

e.g. /u
– Remember, “rm -rf” on a mirror works very well.

Summary: block devices

● IDE (ATAPI) disk drives
– /dev/ad0
– /dev/ad1 ...etc

● SCSI or SCSI-like disks (e.g. USB flash,
SATA)
– /dev/da0
– /dev/da1 ...etc

● IDE (ATAPI) CD-ROM
– /dev/acd0 ...etc

● Traditional floppy drive
– /dev/fd0

● etc.

Summary

● Slices
– /dev/ad0s1
– /dev/ad0s2
– /dev/ad0s3
– /dev/ad0s4

● Defined in MBR
● What PC heads call

"partitions"

● BSD Partitions
– /dev/ad0s1a
– /dev/ad0s1b
– /dev/ad0s1d ...etc
– /dev/ad0s2a
– /dev/ad0s2b
– /dev/ad0s2d ...etc

● Conventions:
– 'a' is /
– 'b' is swap
– 'c' cannot be used

Any questions?

●?

Installing FreeBSD

● Surprisingly straightforward
● Boot from CD or floppies, runs "sysinstall"
● Slice your disk

– Can delete existing slice(s)
– Create a FreeBSD slice

● Partition
● Choose which parts of FreeBSD distribution

you want, or "all"
● Install from choice of media

– CD-ROM, FTP, even a huge pile of floppies!

Installing Software in FreeBSD

● Several different methods
– ports
– packages
– source
– binary

● Meta installation wrapper we recommend is
portupgrade

● We will go in to detail on these methods later
in the workshop.

How Does FreeBSD Start?

● The BIOS loads and runs the MBR
– The MBR is not part of FreeBSD

● A series of "bootstrap" programs are loaded
– see “man boot”

– /boot.config parameters for the boot blocks
 (optional)

– /boot/boot1 first stage bootstrap file
– /boot/boot2 second stage bootstrap file
– /boot/loader third stage bootstrap

● Kernel is loaded, and perhaps some modules
– controlled by /boot/loader.conf

How Does FreeBSD Start?

● The root filesystem is mounted
– “root” = “/” or something like “ad0s1a”

● /sbin/init is run and executes the main
startup script /etc/rc

● This in turn runs other scripts /etc/rc.d/*
– /etc/rc.conf is used to decide whether a service is started or

not and to specify options.

Finding more information

● Our reference handout
– a roadmap!

● man pages
– esp. when you know the name of the command

● www.freebsd.org
– handbook, searchable website / mail archives

● "The Complete FreeBSD" (O'Reilly)
● comp.unix.shell FAQ

– http://www.faqs.org/faqs/
by-newsgroup/comp/comp.unix.shell.html

● STFW (Search The Friendly Web)

	bootcamp intro
	Slide 2
	unix intro
	Why use UNIX?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Installing Software in FreeBSD
	Slide 29
	Slide 30
	Slide 31

