Hands On UNIX

AfNOG X Cairo, Egypt

Processes

- A running instance of a program is called a "process"
- Identified by a numeric **process id (pid)**
 - unique while process is running; will be re-used some time after it terminates
- Has its own private memory space
 - not accessible by other processes; not even other instances of the same program

What does UNIX give a process?

- A table of environment variables
 - just a bunch of name=value settings
 - kept in memory (process gets own private copy)
- A table of open files
 - 0: standard input
 - 1: standard output
 - 2: standard error
- A set of argument strings
 - e.g. what you put after the command name
- THAT'S ALL!!

The shell: a simple interface

- The shell lets you start processes
 - and waits for them to finish, unless you run them in the "background"
- The shell lets you set environment variables
- The shell lets you set up file descriptors
 - Normally stdin is connected to your keyboard and stdout/ stderr to your screen, but you can override
- The shell lets you pass arguments

Shell expansion

- The shell performs processing on your command line before starting the program
- Splits line into words (cmd, arg1, arg2,...)
- Searches for cmd in PATH if required
- Performs various types of argument expansion
 - See exercise

The shell itself runs as a process

- A shell can start another shell
- A shell has its own environment
 - e.g. it uses the PATH setting to locate programs
 - it copies the environment to its children
- A shell has stdin/stdout/stderr
 - You can run a **non-interactive shell, i.e. a script**
 - Examples include periodic system tidying
 - log rotation
 - rebuilding of the locate database
 - rebuilding of the man page index

How are new processes started ?

- The current processes "clones" itself via the fork() call
- The fork'ed copy is called the child
 - it shares all the characteristics of the parent, including memory, open files, etc...
- The chil d

Once a process has started...

- It can make "system calls" to the Kernel as needed, e.g. to
 - read and write data
 - open and close files
 - start new child processes (known as "fork") ...etc
- Using its pid, you can send it a "signal", e.g.
 - Request to **terminate**
 - Request to **suspend** (stop temporarily) or **restart**
 - Certain system events also send signals
- When it ends, returns 'exit code' (0-127)
 - to parent (the process which started it)

Process control from the shell

- For a "foreground" process
 - **Ctrl-C** = terminate
 - Ctrl-Z = suspend **
- Show all processes
 - ps auxw
- Send a signal to any process
 - kill [-sig] pid
- More advanced **job control**
 - jobs = list all jobs (children) started by this shell
 - fg %n = resume in foreground **
 - bg %n = resume in background

Summary

- Processes identified by pid
- Each process at start gets 3 things:
 - Environment variables, e.g. HOME="/home/you"
 - Open files
 - Arguments
- You can **send signals to a running process**
- At end it returns a numeric exit code
- Shell gives you control of these things

Practical Exercise 1

Processes and security

- Each process **runs with set privileges**
 - effective uid
 - effective gid
 - supplementary groups
- Some operations are only available to root
 - e.g. **bind socket** to port below 1024
 - e.g. **shut down** system
- A process running as root (euid=0) can change to any other uid
 but not back again
- Other processes cannot change uid at all!

How do users change passwords?

- Note that /etc/master.passwd is only readable and writable by root
- The 'passwd' program has special privileges, it is marked "setuid root"
- Whenever a user starts the 'passwd' program, kernel gives it euid=root
 - It can then change the user's password
- setuid programs must be written very carefully to avoid security holes
- Don't fiddle with setuid bits

Aside...

- It's really useful to **think of commands in pairs**
 - The command which shows a setting and the command which changes that setting
- Example:
 - <u>pwd</u> shows the current working directory
 - <u>cd</u> changes the current working directory
- Follow the 3-step system for changes
 - Check things are how you think they are
 - Make the change
 - Check things have changed as you expected

The Virtual Filesystem (VFS)

- All filesystems appear in a single tree
- Must have a root device /
- Can attach other devices at other points
- At bootup, everything in /etc/fstab is mounted
 - except lines marked 'noauto'

Key VFS commands

- Show status
 - mount
 - df
- Attach device
 - mount -t cd9660 /dev/acd0 /cdrom
 - /cdrom is called the "mount point"
 - it's just an empty subdirectory
 - after mounting, the filesystem contents appear here
- Detach device
 - **umount** /cdrom

Other devices

- Formatting a floppy disk
 - fdformat /dev/fd0
 - newfs_msdos -L myfloppy /dev/fd0
- Mounting a floppy disk
 - mount -t msdos /dev/fd0 /mnt
- USB pen
 - mount -t msdos /dev/da0s1 /mnt
 - typical example
 - look in /var/log/messages to check device
 - use 'fdisk /dev/da0' to look at slices

Filesystem safety

- DON'T remove any media until it has been unmounted
 - Otherwise, filesystem can be corrupted
- Kernel won't let you unmount a filesystem if it is in use
 - Use 'fstat' to find processes using it
- ALWAYS shut down properly
- Filesystem repair tool is called "**fsck**"

