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Overview

 Goal of this session
 What is DNS ?
 How is DNS built and how does it work?
 How does a query work ?
 Record types
 Caching and Authoritative
 Delegation: domains vs zones
 Finding the error: where is it broken?



Goal of this session

 We will review the basics of DNS, including query 
mechanisms, delegation, and caching.

 The aim is to be able to understand enough of DNS 
to be able to configure a caching DNS server, and 
troubleshoot common DNS problems, both local and 
remote (on the Internet)



What is DNS ?

 System to convert names to IP addresses:

www.ws.afnog.org  →   196.200.223.1
www.afrinic.net → 2001:42d0::200:80:1

 ... and back:

196.200.223.1  →   noc.ws.afnog.org
1.0.0.0.0.8.0.0.0.0.2.0.0.0.0.0.0.0.0.0
.0.0.0.0.0.d.2.4.1.0.0.2.ip6.arpa. →  
www.afrinic.net.



What is DNS ?

 Other information can be found in DNS:

− where to send mail for a domain
− who is responsible for this system
− geographical information
− etc...

 How do we look this information up?



Basic DNS tools

 Using the host command:

# host noc.ws.afnog.org.

noc.ws.afnog.org has address 196.200.223.1

# host 196.200.223.1

1.223.200.196.in-addr.arpa domain name 
pointer noc.ws.afnog.org.



Basic DNS tools

 Host with IPv6:

# host www.afrinic.net

www.afrinic.net has IPv6 address 
2001:42d0::200:80:1

# host 2001:42d0::200:80:1

1.0.0.0.0.8.0.0.0.0.2.0.0.0.0.0.0.0.0.0.0.
0.0.0.0.d.2.4.1.0.0.2.ip6.arpa domain name 
pointer www.afrinic.net.



Basic DNS tools

 Try this yourself with other names – first lookup the 
names below, then do the same for the IP address 
returned: 

  www.yahoo.com
  www.nsrc.org 

ipv6.google.com 

 Does the lookup of the IP match the name ?  Why ?

 Where did the 'host' command find the information ?



How is DNS built?
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How is DNS built?

 DNS is hierarchical

 DNS administration is shared – no single central 
entity administrates all DNS data

 This distribution of the administration is called 
delegation



How does DNS work?

 Clients use a mechanism called a resolver and ask 
servers – this is called a query

 The server being queried will try to find the answer 
on behalf of the client

 The server functions recursively, from top (the root) 
to bottom, until it finds the answer, asking other 
servers along the way - the server is referred to 
other servers



How does DNS work?

 The client (web browser, mail program, ...) use the 
OS’s resolver to find the IP address.

 For example, if we go to the webpage 
www.yahoo.com: 

− the web browser asks the OS « I need the IP for 
www.yahoo.com »

− the OS looks in the resolver configuration which server to 
ask, and sends the query

 On UNIX, /etc/resolv.conf is where the resolver is 
configured.
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Query detail with tcpdump

 Let's lookup 'h1-web.hosting.catpipe.net'

 On the server, we do:

 # tcpdump -n udp and port 53

 In another window/screen do:

 # host <something>



Query detail - output

 1: 18:40:38.62 IP 192.168.1.1.57811 > 192.112.36.4.53:  
29030 [1au] A? h1-web.hosting.catpipe.net. (55)

 2: 18:40:39.24 IP 192.112.36.4.53 > 192.168.1.1.57811:  
29030- 0/13/16 (540)

 3: 18:40:39.24 IP 192.168.1.1.57811 > 192.43.172.30.53:  
7286 [1au] A? h1-web.hosting.catpipe.net. (55)

 4: 18:40:39.93 IP 192.43.172.30.53 > 192.168.1.1.57811:  
7286 FormErr- [0q] 0/0/0 (12)

 5: 18:40:39.93 IP 192.168.1.1.57811 > 192.43.172.30.53:  
50994 A? h1-web.hosting.catpipe.net. (44)

 6: 18:40:40.60 IP 192.43.172.30.53 > 192.168.1.1.57811:  
50994- 0/3/3 (152)

 7: 18:40:40.60 IP 192.168.1.1.57811 > 83.221.131.7.53:  
58265 [1au] A? h1-web.hosting.catpipe.net. (55)

 8: 18:40:41.26 IP 83.221.131.7.53 > 192.168.1.1.57811:  
58265* 1/2/3 A 83.221.131.6 (139)



Query detail - analysis

 We use a packet analyser (wireshark / ethereal) to 
view the contents of the query...



Resolver configuration

 So how does your computer know which server to 
ask to get answers to DNS queries ?

 On UNIX, look in /etc/resolv.conf
 Look now in the file, and verify that you have a 

'nameserver' statement of the form:
nameserver a.b.c.d

or
nameserver ip:v6:ad:dr:es:ss

... where a.b.c.d is the IP/IPv6 of a functioning DNS 
server (it should).



Finding the root...

 The first query is directed to:

192.112.36.4 (G.ROOT-SERVERS.NET.)

 How does the server know where to reach the root 
servers ?

 Chicken-and-egg problem
 Each namerserver has a list of the root nameservers 

(A – M.ROOT-SERVERS.NET) and their IP address
 In BIND, named.root



Using 'dig' to get more 
details

 the 'host' command is limited in its output – good for 
lookups, but not enough for debugging.

 we use the 'dig' command to obtain more details
 dig shows a lot of interesting stuff...



ns# dig @147.28.0.39 www.nsrc.org. a

; <<>> DiG 9.3.2 <<>> @147.28.0.39 www.afnog.org
; (1 server found)
;; global options:  printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4620
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 4, 
ADDITIONAL: 2

;; QUESTION SECTION:
;www.afnog.org.                 IN      A

;; ANSWER SECTION:
www.afnog.org.          14400   IN      A       128.223.162.29

;; AUTHORITY SECTION:
afnog.org.              14400   IN      NS      rip.psg.com.
afnog.org.              14400   IN      NS      arizona.edu.

;; ADDITIONAL SECTION:
rip.psg.com.            77044   IN      A       147.28.0.39
arizona.edu.             2301   IN      A       128.196.128.233

;; Query time: 708 msec
;; SERVER: 147.28.0.39#53(147.28.0.39)
;; WHEN: Wed May 10 15:05:55 2007
;; MSG SIZE  rcvd: 128

Using 'dig' to get more 
details



noc# dig www.afrinic.net any

; <<>> DiG 9.4.2 <<>> any www.afrinic.net
;; global options:  printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36019
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 10

;; QUESTION SECTION:
;www.afrinic.net. IN ANY

;; ANSWER SECTION:
www.afrinic.net. 477 IN AAAA 2001:42d0::200:80:1
www.afrinic.net. 65423 IN A 196.216.2.1

;; AUTHORITY SECTION:
afrinic.net. 65324 IN NS sec1.apnic.net.
afrinic.net. 65324 IN NS sec3.apnic.net.
afrinic.net. 65324 IN NS ns1.afrinic.net.
afrinic.net. 65324 IN NS tinnie.arin.net.
afrinic.net. 65324 IN NS ns.lacnic.net.
afrinic.net. 65324 IN NS ns-sec.ripe.net.

;; ADDITIONAL SECTION:
ns.lacnic.net. 151715 IN A 200.160.0.7
ns.lacnic.net. 65315 IN AAAA 2001:12ff::7
ns-sec.ripe.net. 136865 IN A 193.0.0.196
ns-sec.ripe.net. 136865 IN AAAA 2001:610:240:0:53::4
ns1.afrinic.net. 65315 IN A 196.216.2.1
tinnie.arin.net. 151715 IN A 168.143.101.18
sec1.apnic.net. 151715 IN A 202.12.29.59
sec1.apnic.net. 151715 IN AAAA 2001:dc0:2001:a:4608::59
sec3.apnic.net. 151715 IN A 202.12.28.140
sec3.apnic.net. 151715 IN AAAA 2001:dc0:1:0:4777::140

;; Query time: 1 msec
;; SERVER: 196.200.218.1#53(196.200.218.1)
;; WHEN: Tue May 27 08:48:13 2008
;; MSG SIZE  rcvd: 423



dig output

 Some interesting fields:

− flags section: qr aa rd
− status
− answer section
− authority section
− TTL (numbers in the left column)
− query time
− server

 Notice the 'A' and 'AAAA' record type in the output.



Record types

 Basic record types:

 A, AAAA: IPv4, IPv6 address
 NS: NameServer
 MX: Mail eXchanger
 CNAME: Canonical name (alias)
 PTR: Reverse information



Caching vs Authoritative

 In the dig output, and in subsequent outputs, we 
noticed a decrease in query time if we repeated the 
query.

 Answers are being cached by the querying 
nameserver, to speed up requests and save network 
ressources

 The TTL value controls the time an answer can be 
cached

 DNS servers can be put in two categories: caching 
and authoritative.



Caching vs Authoritative: 
authoritative

 Authoritative servers typically only answer queries 
for data over which they have authority, i.e.: data of 
which they have an external copy, i.e. from disk (file 
or database)

 If they do not know the answer, they will point to a 
source of authority, but will not process the query 
recursively.



Caching vs Authoritative: 
caching

 Caching nameservers act as query forwarders on 
behalf of clients, and cache answers for later.

 Can be the same software (often is), but mixing 
functionality (recursive/caching and authoritative) is 
discouraged (security risks + confusing)

 The TTL of the answer is used to determine how 
long it may be cached without re-querying.



TTL values

 TTL values decrement and expire

 Try repeatedly asking for the A record for 
www.yahoo.com: 

# dig www.yahoo.com 

 What do you observe about the query time and the 
TTL ? 



SOA

 Let's query the SOA for a domain:

# dig SOA <domain>
...
;; AUTHORITY SECTION:
<domain>. 860 IN SOA ns.<domain>. root.<domain>.

200702270 ; serial
28800 ; refresh
14400 ; retry
3600000 ; expire
86400 ; neg ttl

...



SOA

 The first two fields highlighted are:

− the SOA (Start Of Authority), which the administrator sets 
to the name of the « source » server for the domain data 
(this is not always the case)

− the RP (Responsible Person), which is the email address 
(with the first @ replaced by a '.') to contact in case of 
technical problems.



SOA

 The other fields are:
− serial: the serial number of the zone: this is used for 

replication between two nameservers
− refresh: how often a replica server should check the 

master to see if there is new data
− retry: how often to retry if the master server fails to 

answer after refresh.
− expire: when the master server has failed to answer for 

too long, stop answering clients about this data.
 Why is expire necessary ?



Running a caching 
nameserver

 Running a caching nameserver locally can be very 
useful

 Easy to setup, for example on FreeBSD:

− add named_enable="YES" to /etc/rc.conf
− start named:

/etc/rc.d/named start

 What is a good test to verify that named is 
running ?



Running a caching 
nameserver

 When you are confident that your caching 
nameserver is working, enable it in your local 
resolver configuration (/etc/resolv.conf):

nameserver 127.0.0.1



Delegation

 We mentioned that one of the advantages of DNS was 
that of distribution through shared administration.  This 
is called delegation.

 We delegate when there is an administrative boundary 
and we want to turn over control of a subdomain to:

− a department of a larger organization
− an organization in a country
− an entity representing a country's domain



Delegation



Delegation: Domains vs 
Zones

 When we talk about the entire subtree, we 
talk about domains

 When we talk about part of a domain that 
is administered by an entity, we talk 
about zones



Delegation: Domains vs 
Zones



Finding the error: using doc

 When you encounter problems with your network, 
web service or email, you don't always suspect DNS.

 When you do, it's not always obvious what the 
problem is – DNS is tricky.

 A great tool for quickly spotting configuration 
problems is 'doc'

 /usr/ports/dns/doc – install it now!
 Let's do a few tests on screen with doc...



Conclusion

 DNS is a vast subject
 It takes a lot of practice to pinpoint problems 

accurately the first time – caching and recursion are 
especially confusing

 Remember that there are several servers for the 
same data, and you don't always talk to the same 
one

 Practice, practice, practice!
 Don't be afraid to ask questions...



?

Questions ?
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