
Introduction to the DNS

AfNOG 2009
Cairo, Egypt

Overview

 Goal of this session
 What is DNS ?
 How is DNS built and how does it work?
 How does a query work ?
 Record types
 Caching and Authoritative
 Delegation: domains vs zones
 Finding the error: where is it broken?

Goal of this session

 We will review the basics of DNS, including query
mechanisms, delegation, and caching.

 The aim is to be able to understand enough of DNS
to be able to configure a caching DNS server, and
troubleshoot common DNS problems, both local and
remote (on the Internet)

What is DNS ?

 System to convert names to IP addresses:

www.ws.afnog.org → 196.200.223.1
www.afrinic.net → 2001:42d0::200:80:1

 ... and back:

196.200.223.1 → noc.ws.afnog.org
1.0.0.0.0.8.0.0.0.0.2.0.0.0.0.0.0.0.0.0
.0.0.0.0.0.d.2.4.1.0.0.2.ip6.arpa. →
www.afrinic.net.

What is DNS ?

 Other information can be found in DNS:

− where to send mail for a domain
− who is responsible for this system
− geographical information
− etc...

 How do we look this information up?

Basic DNS tools

 Using the host command:

host noc.ws.afnog.org.

noc.ws.afnog.org has address 196.200.223.1

host 196.200.223.1

1.223.200.196.in-addr.arpa domain name
pointer noc.ws.afnog.org.

Basic DNS tools

 Host with IPv6:

host www.afrinic.net

www.afrinic.net has IPv6 address
2001:42d0::200:80:1

host 2001:42d0::200:80:1

1.0.0.0.0.8.0.0.0.0.2.0.0.0.0.0.0.0.0.0.0.
0.0.0.0.d.2.4.1.0.0.2.ip6.arpa domain name
pointer www.afrinic.net.

Basic DNS tools

 Try this yourself with other names – first lookup the
names below, then do the same for the IP address
returned:

 www.yahoo.com
 www.nsrc.org

ipv6.google.com

 Does the lookup of the IP match the name ? Why ?

 Where did the 'host' command find the information ?

How is DNS built?

org com

DNS Database

etc usrbin

Unix Filesystem
... forms a tree structure

ac.ma

emi.ac.ma

afnog.org nsrc.org yahoo.com
usr/local usr/sbin/etc/rc.d

usr/local/src

.(root) / (root)

ma

www.afnog.org

How is DNS built?

 DNS is hierarchical

 DNS administration is shared – no single central
entity administrates all DNS data

 This distribution of the administration is called
delegation

How does DNS work?

 Clients use a mechanism called a resolver and ask
servers – this is called a query

 The server being queried will try to find the answer
on behalf of the client

 The server functions recursively, from top (the root)
to bottom, until it finds the answer, asking other
servers along the way - the server is referred to
other servers

How does DNS work?

 The client (web browser, mail program, ...) use the
OS’s resolver to find the IP address.

 For example, if we go to the webpage
www.yahoo.com:

− the web browser asks the OS « I need the IP for
www.yahoo.com »

− the OS looks in the resolver configuration which server to
ask, and sends the query

 On UNIX, /etc/resolv.conf is where the resolver is
configured.

A DNS query

www.ya
hoo.co

m

?

« . » (root)

client server

.com DNSwww.yahoo.com ?

yahoo.com DNS

www.yahoo.com

?

ask
 .c

om D
NS

ask Yahoo DNS

87.140.2.33

87.140.2.33

www.yahoo.com ?
Q

1

2

3

4
5

6

A

Query detail with tcpdump

 Let's lookup 'h1-web.hosting.catpipe.net'

 On the server, we do:

 # tcpdump -n udp and port 53

 In another window/screen do:

 # host <something>

Query detail - output

 1: 18:40:38.62 IP 192.168.1.1.57811 > 192.112.36.4.53:
29030 [1au] A? h1-web.hosting.catpipe.net. (55)

 2: 18:40:39.24 IP 192.112.36.4.53 > 192.168.1.1.57811:
29030- 0/13/16 (540)

 3: 18:40:39.24 IP 192.168.1.1.57811 > 192.43.172.30.53:
7286 [1au] A? h1-web.hosting.catpipe.net. (55)

 4: 18:40:39.93 IP 192.43.172.30.53 > 192.168.1.1.57811:
7286 FormErr- [0q] 0/0/0 (12)

 5: 18:40:39.93 IP 192.168.1.1.57811 > 192.43.172.30.53:
50994 A? h1-web.hosting.catpipe.net. (44)

 6: 18:40:40.60 IP 192.43.172.30.53 > 192.168.1.1.57811:
50994- 0/3/3 (152)

 7: 18:40:40.60 IP 192.168.1.1.57811 > 83.221.131.7.53:
58265 [1au] A? h1-web.hosting.catpipe.net. (55)

 8: 18:40:41.26 IP 83.221.131.7.53 > 192.168.1.1.57811:
58265* 1/2/3 A 83.221.131.6 (139)

Query detail - analysis

 We use a packet analyser (wireshark / ethereal) to
view the contents of the query...

Resolver configuration

 So how does your computer know which server to
ask to get answers to DNS queries ?

 On UNIX, look in /etc/resolv.conf
 Look now in the file, and verify that you have a

'nameserver' statement of the form:
nameserver a.b.c.d

or
nameserver ip:v6:ad:dr:es:ss

... where a.b.c.d is the IP/IPv6 of a functioning DNS
server (it should).

Finding the root...

 The first query is directed to:

192.112.36.4 (G.ROOT-SERVERS.NET.)

 How does the server know where to reach the root
servers ?

 Chicken-and-egg problem
 Each namerserver has a list of the root nameservers

(A – M.ROOT-SERVERS.NET) and their IP address
 In BIND, named.root

Using 'dig' to get more
details

 the 'host' command is limited in its output – good for
lookups, but not enough for debugging.

 we use the 'dig' command to obtain more details
 dig shows a lot of interesting stuff...

ns# dig @147.28.0.39 www.nsrc.org. a

; <<>> DiG 9.3.2 <<>> @147.28.0.39 www.afnog.org
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4620
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 4,
ADDITIONAL: 2

;; QUESTION SECTION:
;www.afnog.org. IN A

;; ANSWER SECTION:
www.afnog.org. 14400 IN A 128.223.162.29

;; AUTHORITY SECTION:
afnog.org. 14400 IN NS rip.psg.com.
afnog.org. 14400 IN NS arizona.edu.

;; ADDITIONAL SECTION:
rip.psg.com. 77044 IN A 147.28.0.39
arizona.edu. 2301 IN A 128.196.128.233

;; Query time: 708 msec
;; SERVER: 147.28.0.39#53(147.28.0.39)
;; WHEN: Wed May 10 15:05:55 2007
;; MSG SIZE rcvd: 128

Using 'dig' to get more
details

noc# dig www.afrinic.net any

; <<>> DiG 9.4.2 <<>> any www.afrinic.net
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36019
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 10

;; QUESTION SECTION:
;www.afrinic.net. IN ANY

;; ANSWER SECTION:
www.afrinic.net. 477 IN AAAA 2001:42d0::200:80:1
www.afrinic.net. 65423 IN A 196.216.2.1

;; AUTHORITY SECTION:
afrinic.net. 65324 IN NS sec1.apnic.net.
afrinic.net. 65324 IN NS sec3.apnic.net.
afrinic.net. 65324 IN NS ns1.afrinic.net.
afrinic.net. 65324 IN NS tinnie.arin.net.
afrinic.net. 65324 IN NS ns.lacnic.net.
afrinic.net. 65324 IN NS ns-sec.ripe.net.

;; ADDITIONAL SECTION:
ns.lacnic.net. 151715 IN A 200.160.0.7
ns.lacnic.net. 65315 IN AAAA 2001:12ff::7
ns-sec.ripe.net. 136865 IN A 193.0.0.196
ns-sec.ripe.net. 136865 IN AAAA 2001:610:240:0:53::4
ns1.afrinic.net. 65315 IN A 196.216.2.1
tinnie.arin.net. 151715 IN A 168.143.101.18
sec1.apnic.net. 151715 IN A 202.12.29.59
sec1.apnic.net. 151715 IN AAAA 2001:dc0:2001:a:4608::59
sec3.apnic.net. 151715 IN A 202.12.28.140
sec3.apnic.net. 151715 IN AAAA 2001:dc0:1:0:4777::140

;; Query time: 1 msec
;; SERVER: 196.200.218.1#53(196.200.218.1)
;; WHEN: Tue May 27 08:48:13 2008
;; MSG SIZE rcvd: 423

dig output

 Some interesting fields:

− flags section: qr aa rd
− status
− answer section
− authority section
− TTL (numbers in the left column)
− query time
− server

 Notice the 'A' and 'AAAA' record type in the output.

Record types

 Basic record types:

 A, AAAA: IPv4, IPv6 address
 NS: NameServer
 MX: Mail eXchanger
 CNAME: Canonical name (alias)
 PTR: Reverse information

Caching vs Authoritative

 In the dig output, and in subsequent outputs, we
noticed a decrease in query time if we repeated the
query.

 Answers are being cached by the querying
nameserver, to speed up requests and save network
ressources

 The TTL value controls the time an answer can be
cached

 DNS servers can be put in two categories: caching
and authoritative.

Caching vs Authoritative:
authoritative

 Authoritative servers typically only answer queries
for data over which they have authority, i.e.: data of
which they have an external copy, i.e. from disk (file
or database)

 If they do not know the answer, they will point to a
source of authority, but will not process the query
recursively.

Caching vs Authoritative:
caching

 Caching nameservers act as query forwarders on
behalf of clients, and cache answers for later.

 Can be the same software (often is), but mixing
functionality (recursive/caching and authoritative) is
discouraged (security risks + confusing)

 The TTL of the answer is used to determine how
long it may be cached without re-querying.

TTL values

 TTL values decrement and expire

 Try repeatedly asking for the A record for
www.yahoo.com:

dig www.yahoo.com

 What do you observe about the query time and the
TTL ?

SOA

 Let's query the SOA for a domain:

dig SOA <domain>
...
;; AUTHORITY SECTION:
<domain>. 860 IN SOA ns.<domain>. root.<domain>.

200702270 ; serial
28800 ; refresh
14400 ; retry
3600000 ; expire
86400 ; neg ttl

...

SOA

 The first two fields highlighted are:

− the SOA (Start Of Authority), which the administrator sets
to the name of the « source » server for the domain data
(this is not always the case)

− the RP (Responsible Person), which is the email address
(with the first @ replaced by a '.') to contact in case of
technical problems.

SOA

 The other fields are:
− serial: the serial number of the zone: this is used for

replication between two nameservers
− refresh: how often a replica server should check the

master to see if there is new data
− retry: how often to retry if the master server fails to

answer after refresh.
− expire: when the master server has failed to answer for

too long, stop answering clients about this data.
 Why is expire necessary ?

Running a caching
nameserver

 Running a caching nameserver locally can be very
useful

 Easy to setup, for example on FreeBSD:

− add named_enable="YES" to /etc/rc.conf
− start named:

/etc/rc.d/named start

 What is a good test to verify that named is
running ?

Running a caching
nameserver

 When you are confident that your caching
nameserver is working, enable it in your local
resolver configuration (/etc/resolv.conf):

nameserver 127.0.0.1

Delegation

 We mentioned that one of the advantages of DNS was
that of distribution through shared administration. This
is called delegation.

 We delegate when there is an administrative boundary
and we want to turn over control of a subdomain to:

− a department of a larger organization
− an organization in a country
− an entity representing a country's domain

Delegation

Delegation: Domains vs
Zones

 When we talk about the entire subtree, we
talk about domains

 When we talk about part of a domain that
is administered by an entity, we talk
about zones

Delegation: Domains vs
Zones

Finding the error: using doc

 When you encounter problems with your network,
web service or email, you don't always suspect DNS.

 When you do, it's not always obvious what the
problem is – DNS is tricky.

 A great tool for quickly spotting configuration
problems is 'doc'

 /usr/ports/dns/doc – install it now!
 Let's do a few tests on screen with doc...

Conclusion

 DNS is a vast subject
 It takes a lot of practice to pinpoint problems

accurately the first time – caching and recursion are
especially confusing

 Remember that there are several servers for the
same data, and you don't always talk to the same
one

 Practice, practice, practice!
 Don't be afraid to ask questions...

?

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

