UNIX[™]/Linux Overview

Unix/IP Preparation Course May 23, 2010 Kigali, Rwanda

UNIX History

FreeBSD Timeline

Unix vs. Linux

Are they the same?

Yes, at least in terms of operating system interfaces Linux was developed independently from Unix Unix is much older (1969 vs. 1991)

Scalability and reliability

Both scale very well and work well under heavy load

(this is an understatement 🙂)

Flexibility

Both emphasize small, interchangeable components Manageability

Remote logins rather than GUI Scripting is integral

Security

Due to modular design has a reasonable security model Linux and its applications are not without blame

The Unix System

Kernel

The "core" of the operating system Device drivers

communicate with your hardware

block devices, character devices, network devices, pseudo devices

Filesystems

organise block devices into files and directories

Memory management

Timeslicing (multitasking)

Networking stacks - esp. TCP/IP

Enforces security model

Shells

Command line interface for executing programs DOS/Windows equivalent: command.com or command.exe Also programming languages for scripting DOS/Windows equivalent: batch files Choice of similar but slightly different shells sh: the "Bourne Shell". Standardised in POSIX csh: the "C Shell". Not standard, but includes command history bash: the "Bourne-Again Shell". Combines POSIX standard with command history. Others: ksh, tcsh, zsh

User processes

The programs that you choose to run Frequently-used programs tend to have short cryptic names "ls" = list files "cp" = copy file "rm" = remove (delete) file Lots of stuff included in most base systems editors, compilers, system admin tools Lots more stuff available to install too Using the Debian/Ubuntu repositories

System processes

Programs that run in the background; also known as "daemons" ==>

cron: executes programs at certain times of day
syslogd: takes log messages and writes them to files
inetd: accepts incoming TCP/IP connections and starts programs for each one
sshd: accepts incoming logins
sendmail (other MTA daemon like Exim): accepts incoming

mail

Security model

Numeric IDs user id (uid 0 = "root", the superuser) group id supplementary groups Mapped to names /etc/passwd, /etc/group (plain text files) Suitable security rules enforced e.g. you cannot kill a process running as a different user, unless

you are "*root*"

Core directory refresher

/	(/boot, /bin, /sbin, /etc, maybe /tmp)
/var	(Log files, spool, maybe user mail)
/usr	(Installed software packages)
/tmp	(May reside under "/")

Don't confuse the the "root account" (/root) with the "root" ("/") partition.

'Auto Defaults' Partition

During FreeBSD installation you can choose this option. It creates the following:

- "/" Small Root partition
 - this will contain everything not in another partition /bin, /sbin, /usr etc.
- A swap partition for virtual memory
- /var for "variable" files, such as logs, mail spools, etc.
- /tmp
 - Where temporary files are located
- /usr

- /usr/home contains user directories. This is the largest partition created.

Partitioning Issues

/var may not be big enough /usr contains OS utilites, third-party software /usr/home contains your own important data If you reinstall from scratch and erase /home, you will lose your own data

- Everything in "/" is now more common due to RAID. Why? Valid?
- /tmp?
- Others?
- How much *swap* should you define?

Note...

Partitioning is just a logical division

- If your hard drive dies, most likely *everything* will be lost.
- If you want data security, then you need to set up mirroring with a separate drive. Another reason to keep your data on a separate partition, e.g. /u Remember, "rm -rf" on a mirror works very well.

Or, as always "Data Security" <==> Backup

Software Installation

Software management in FreeBSD

- Install from source
- Install from binary
- Compile from source using a port
- Use a wrapper tool, such as *portinstall*.
- Install pre-built FreeBSD packages using pkg_*

You can keep the source tree local and up-to-date. This is known as the *ports collections*. A number of tools to do this, including *portsnap*.

System Startup

Startup scripts in FreeBSD

- /etc/rc.d system startup scripts
- /usr/local/etc/rc.d third-party startup scripts

Controlling services

- In /etc/defaults/rc.conf initial defaults
- /etc/rc.conf override settings here

Administration

The use of the *root* account is discouraged and the *sudo* program should be used to access root privileges from your own account instead.

You can do *a "buildworld"* to move between major and minor releases.

Important Reads

- man builtin
- man hier
- man man
- man ports
- man rc.conf

And, "man any_unknown_command" when you are in doubt.

There's More

The FreeBSD Handbook

http://www.freebsd.org/handbook/

Some Web Resources

http://www.freebsd.org http://forums.freebsd.org http://distrowatch.com/table.php?distribution=freebsd http://www.freshports.org/ http://wiki.freebsd.org http://en.wikipedia.org/wiki/FreeBSD

GIYF (Google Is Your Friend)

Packages & Exercises

We'll reinforce some of these concepts using exercises...