

Cryptographic Applications and
Methods

Joel Jaeggli
Some liberal help from:

Brian Candler and Hervey Allen

Most recently updated for AFNOG 2006

Why use cryptographic systems?

● Cryptography can offer genuinely secure
solutions to important security problems.

● Confidentiality – Can I ensure that no one can
see my data in the event of interception or loss?

● Data Integrity – Has this data been modified?
● Authentication – Through the presentation of

cryptographic credentials can I uniquely identify
myself to a 3rd party?

Cryptographic system usage

● It used to be be the case that the principle users of
cryptography, were governments interested in
protecting their own communications or spying on their
enemies.

● Cryptography has become one of the fundamental
technologies underpinning the late 20th and early 21st
century economies. It secures transactions, protects
legal agreements against repudiation, enforces access
controls on media, and serves as a general purpose
wrapper for communications.

Key approaches used in modern
cryptographic systems

● Shared key symmetric ciphers
● One way encryption through hashing
● asymmetric (Public and Private) cipher

systems

Symmetric ciphers

● In symmetric ciphers the same key is used to
encrypt and decrypt the data.

● Examples of symmetric cyphers:
– DES, 56bit key length
– 3DES, effectively 112bits
– AES, 128 – 256 bit key length
– Blowfish, 128 bits
– Idea, 128 bits

Symmetric cipher diagram

clear
text

clear
textk k

cipher
text

The same key is used to encrypt the document
before sending and decrypt it at the far end.

Symmetric ciphers - continued

● Symmetric ciphers can be subdivided into:
● Block ciphers - Operate on chunks of data (64 bits in

DES, 128 in AES). This kind transform is known as a
pseudo-random function, and is in general unvaryingly
applied to each block.

● Stream ciphers which operate on data either one bit or
byte at a time (the rc4 cipher, and A5/1 used in
encrypting GSM communications are stream cyphers).
The transformation of successive bytes varies based
on the current state.

Features of symmetric cipher
systems

● Fast to encrypt and decrypt, suitable for large
volumes of data, and real time applications.

● A well designed symmetric cipher can only be
attacked through brute-force exhaustion of the
key space.
– 40, 48, 56, and 64bit ciphers have been

successfully attacked by brute force means. ASIC
based hardware costing on order of $100K can
attack 56bit ciphers in minutes or hours.

Features - Continued

● Current recommendation would be to choose a
cipher Based on the ability to secure data for at
least 20 years. 90 bits would probably have
been acceptable in 2000, but now?

● Symmetric ciphers do not solve the problem of
key distribution.

● Reversibility – literally decryption in a symmetric
cipher is the reverse of encryption.

Symmetric cipher examples
$ cat bank-note

This is some text that will be protected
through strong encryption.
--
The password for bank account number:

011 4444 7356 118

is:

rosebud

$ gpg --cipher-algo blowfish -c bank-note
Enter passphrase: xxxxxx
Repeat passphrase: xxxxxx
$

$ gpg -d bank-note.gpg
gpg: BLOWFISH encrypted data
Enter passphrase: xxxxxx
gpg: encrypted with 1 passphrase
This is some text that will be protected
through strong encryption.
--
The password for bank account number:

011 4444 7356 118

is:

rosebud
gpg: WARNING: message was not integrity protected

 $ less bank-note.gpg
"bank-note.gpg" may be a binary file. See it anyway?
<8C>^M^D^D^C^B^@^?<84><9D><B6><9F>:^Y` <BB><F0>}1k<88>^E<93>< <9ɛ Ĉ
4>^^e<A7>^W<U+07E0><FA>"<D8>L<U+076A>5<8F>b\<91><85>^D<90>J<E1>/
$<U+04F7>^H^\X.i<86>t<C0><8F>8mA<E6>J6 <DE>k}O<A9>2^?<98><D2>`^S
<C9><EB>h<BC>ESC^A<A0><96><E0><96>y<C6>b<96><C1><A5><E4>j<D4>ObO
S^Z<F4><FD><D5>tp<9D>s<AE><D1>^A^<C2>^_I<81><C5><E7>^V<D6>^E{<C0
>E<A7><F0><83>^H\<C5>4f<EB><E2>:^\<87>a<87>_<9C><FC><F6><A1>h+<F
E><96>O<DD>j<F6>[8^E<E9>L<AD>` <9C>^]_Ɠ
bank-note.gpg (END)

1 2

3 4

One-way encryption(hashing)

● A one way mathematical transform that cannot
be reversed to product the original data.

● The message digest or checksum is always the
same size for a given algorithm.

● Changing one bit in the original data would
produce a completely different checksum.

One way hash functions

● Unix crypt (derived from DES)
● MD5 (message digest 5) 128bit hash
● SHA1 (secure hash algorithm) 160 bits
● SHA 256/512

Hash Function

clear
text

Fixed length "hash"
or "message digest"

hashing
function

Munging the document gives a short "message
 digest" (checksum). It is not possible to go
back from the digest to the original document.

Warning!

● When we gave this talk in 2000 we said:

– No two documents have yet been discovered which
have the same MD5 digest!

– No feasible method to create any document that has a
given MD5 digest.

● The first statement is now categorically untrue.
● The second is now less true than it once was.
● SHA1 is now looking a little weak as well.
● The implication is clear, you need to periodically evaluate

the threats to cryptographic systems based on current
knowledge.

Applications of one-way hashes

● Integrity checks

– No matter how much data you run through md5 you get
a hash of the same size.

– Despite recent changes in understanding, It is
infeasible for an attacker to modify a file and leave it
with the same MD5 checksum.

– Using SHA1 or SHA256 instead of md5 is still probably
a good idea.

● Password storage

– Password files with clear text password in them are a
very attractive target.

Applications - continued

– When a user logs in, we hash the password they
give us and compare it to the hash in the password
or shadow file.

– Can the password still be recovered? That
depends.

● Generating encryption keys
– For some reason, users can't remember 128bit

numbers.
– a hash can be used to convert a password/phrase

into a fixed length 128bit key.

Passwords - Digression
● How good does a password/phrase have to be in order to

protect against brute-force or dictionary attacks against the
password itself?

● Entropy in language.

– A typical english sentence has 1.2 bits of entropy per
character, you need 107 characters to get a statistically
random md5 hash.

– Using totally random english characters you need 28
characters.

– Using a random distribution of all 95 printable ascii
characters you need 20 characters.

● Observation, good passwords are hard to come by.
* From the PGP passphrase faq

Hash example

[root@limestone root]# cd /var/ftp/fedora/5/i386/iso
[root@limestone iso]# ls -la
total 6403108
drwxr-xr-x 2 263 263 4096 Mar 14 21:39 .
drwxr-xr-x 5 263 263 4096 Mar 14 20:32 ..
-rw-r--r-- 1 263 263 687235072 Mar 14 20:47 FC-5-i386-disc1.iso
-rw-r--r-- 1 263 263 700618752 Mar 14 20:48 FC-5-i386-disc2.iso
-rw-r--r-- 1 263 263 721016832 Mar 14 20:50 FC-5-i386-disc3.iso
-rw-r--r-- 1 263 263 720910336 Mar 14 20:51 FC-5-i386-disc4.iso
-rw-r--r-- 1 263 263 387753984 Mar 14 20:52 FC-5-i386-disc5.iso
-rw-r--r-- 1 263 263 3253669888 Mar 14 20:49 FC-5-i386-DVD.iso
-rw-r--r-- 1 263 263 79122432 Mar 14 20:31 FC-5-i386-rescuecd.iso
-rw-r--r-- 1 263 263 671 Mar 14 21:38 SHA1SUM
[root@limestone iso]# sha1sum FC-5-i386-disc1.iso
43546c0e0d1fc64b6b80fe1fa99fb6509af5c0a0 FC-5-i386-disc1.iso
[root@limestone iso]#

1

2

3

Public key ciphers

● For most of the history of cryptography, it was
necessary for the key to the encryption system,
known to both parties, to be kept secret in order
to protect the enciphered data.

● Through new methods pioneered in the 1970's
that basically changed. Widespread adoption
would wait until the advent of the commercial
use of the Internet.

● RSA and DSA are the most common systems
in use here.

Two keys for encryption

● Keys are generated in pairs, one public (don't
have to protect it) the other private (keep this
one secret).

● The keys are mathematically related. In the
case of RSA, the public key is the product of
two very large prime numbers and a public
exponent, the private key contains both primes
and a few other values related to the
mathematical transform.

Two keys – continued

● The part of key distribution problem is solved. You can
post the public key anywhere. People can encrypt
messages to you, which can only be decrypted with
the private key

● The system is based on the assumption that it easy to
convert the private key in into the public but
computationally infeasible to do the reverse.

● “ No polynomial-time method for factoring large
integers on a classical computer has yet been found,
but it has not been proven that none exists.”*

* Wikipedia - Public_key_encryption

Public Key diagram

clear
text

clear
textk1

(public key)

k2

(private key)

cipher
text

One key is used to encrypt the document,
a different key is used to decrypt it

How big are the keys? - digression

● As of 2005 the largest asymmetric key factored
by conventional methods was 663 bits, 2^663 is
200 decimal digits. 1024 bits is 309 decimal
digits, 2048 bits is 617 decimal digits.

● Every time you add a bit, the search space
doubles in size.

● Numbers on this scale have little relevance
outside mathematics, e.g. the number of atoms
in the visible universe can be expressed as
about 10^81.

● US national debt in USD*
–

8355718000000
● 10^81 – number o f atoms in visible universe

– 1000

● 2^663 – bi ggest asymmetric key factored to date
– 382725258645104877886550812609503094103299358017333278221360589891900028618480487938625922563193922631543

17107227530633921701753935367770195646260767912323717284188541295913442384799112073398408183808

● 2^1024 1024 bit key
– 179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120

113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005
768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137216

● 2^2048 2048 bit key
– 323170060713110073007148766886699519604441026697154840321303454275246551388678908931972014115229134636887

179609218980194941195591504909210950881523864482831206308773673009960917501977503896521067960576383840675
682767922186426197561618380943384761704705816458520363050428875758915410658086075523991239303855219143333
896683424206849747865645694948561760353263220580778056593310261927084603141502585928641771167259436037184
618573575983511523016459044036976132332872312271256847108202097251571017269313234696785425806566979350459
97268352998638215525166389437335543602135433229604645318478604952148193555853611059596230656

* as of april 30 2006

Another use, authentication

● Cipher some text using the private key. If you
can decipher it with the public-key you can
prove it was written by the private key holder.

Securing the private key

● Obviously the linchpin in the system is the
proper handling of the private key. If access to
it is compromised the system fails.

● For applications like PGP consider storing it off-
line, for example, on a USB memory stick or
smart-card.

● Consider storing it encrypted when it has to be
on a machine, for example passphrase
protected for SSH or SSL keys.

Securing the private key - continued

● Unfortunately some applications make it
infeasible to use password protected private
keys.

● Nobody likes to have to type their password
every time a web server is rebooted.

Application

● Public key cryptographic systems are The
cornerstone of a number of now critical
applications, however they have some
problems...

● They can be very computationally expensive, a
problem for which a relatively simple solution is
to leverage the other two techniques...

● Key distribution from the perspective of trust is
also a problem.

Application - encrypting

● To encrypt a stream of data, use a symmetric
cipher.

● Select a random key for the session.
● Use a public key cipher to protect the session

key.

Encrypting the shared key - diagram

k1 k2

encrypted
session key

cipher
text

random
session key

ks ks

(private)(public)

Use a symmetric cipher with a randomly generated
key. Use a public key cipher to encrypt the session
key, and send it along with the encrypted document.

Application – authenti cation
revisited

● Rather than encrypting an entire document as a form
of authentication, take a hash of the document and
encrypt only that.

● This is known as a digital signature.
● Remember, only the holder of the private key can

encipher a message which can be decrypted with the
public key.

● Digital signatures have a number of applications
including e-commerce and declarations of identity
(certificates).

Authentication - diagram

k2 k1

digital
signature

COMPARE

hash hash

(public)(private)

Take a hash of the document and encrypt
only that. An encrypted hash is called a
"digital signature"

Key Distribution

● The problem of distributing a shared key has
been replaced by the problem of distributing the
public key.

● Often we want to communicate with a 3rd party
whose key we do not know.

● But what if there's someone in between
intercepting our traffic.

Key Distribution - MITM

● Passive stiffing is no problem.
● If packets can be intercepted they can

substitute a different key.
● The attacker uses a separate key to talk to

each party.
● You think you're talking over a secure channel,

but in fact you're talking to an attacker.
key 1 key 2

Attacker sees all traffic in plain text - and can modify it!

Key Distribution – di gital certificates

● Digital certificates can solve the Man-In-The-Middle
problem.

● I Have no knowledge of the remote side's key.
● But a party that I already trust can vouch for them.
● The trusted third-party can sign a certificate that

contains the remote sides name and public key.
● I can validate the signature on the certificate using the

public key of the party I already trust.

The TLS(SSL) approach

● I generate a private key on my system.
● I send my public key plus my identity in the form

of a certificate signing request (CSR) to a
certificate authority (CA).

● The CA performs some sort of validation to
insure that I am who I say I am.

● They sign a certificate containing my public key,
my domain name, and and expiration date.

● I install the certificate on my server.

TLS – par t 2

● When a client connects with SSL or TLS
– They negotiate an encrypted session during which

they learn the server's public key.
– The server sends them the certificate
– They validate the certificate using the CA's public

key stored in a keyring on their machine.
– If the certificate is valid, the domain name matches

the domain in the cert and the expiration date has
not passed, the client knows the connection is
secure.

TLS - problems

● The security of SSL and TLS depends on:
– The private key remaining secure on your server.
– The CA's public key being installed on the client.
– The CA being well managed.
– The CA being trustworthy.

CA Cert - examples

A CA signed cert

CA keyring in your browser

A CA certificate

The PGP approach

● We don't trust anyone (especially big corporate
monopolies) expect people that we know.

● You sign the key's of people you know in order
to vouch for them.

● Other people can choose to trust your signature
as much as they trust you.

● A distributed web of trust is created.

PGP Examples
Joel's key signed by others

Joe's key signed by Joel

Joe's key detail

PGP Examples 2
Good signature from a trusted key

Good but untrusted signature

Unverified signature (no key)

The SSH approach

● The first time a connection is made to a host
the key has to be accepted.
– Key is stored in ~/.ssh/known_hosts or the

equivalent.
● On the next connection, if the key presented is

different then maybe an attacker is a work.
– Maybe the host just has a new key?

The SSH approach - part 2

● Use public key cryptography to prove user identity.

– Generate a public/private key pair.
– Install the private key locally and the public key on the

remote host.
– Connect from local host to remote, no password

required, it has been replaced by something vastly
stronger.

– Still a good idea to protect the private a key with a
password, but that password never has to touch the
network, never has to be stored in any form on a
remote system and is not subject to the whims of policy
on the remote system.

Where can you apply these
cryptographic methods

● At the link layer

– PPP encryption
● At the network layer

– IPSEC
● At the transport layer

– TLS/SSL
● At the application layer

– SSH
– PGP and GPG
– System integrity checking, package management, etc

Cryptography isn't really an option!

● Cryptographically enhanced systems offer the protection
you need now, to protect your systems, your users and
their data.

● Important first steps:

– Use SSH exclusively for system administration.
– Use SCP/SFTP for all file transfers not wrapped in SSL

or done anonymously.
– Install POP3/IMAP and SMTP servers with TLS

support.
– Use SSL/HTTPS for applications involving passwords

or proprietary data (like webmail applications).

Bibliography
● Applied cryptography second edition

– Schneier, Bruce., 1996. ISBN 0471117099
● PGP passphrase faq

– http://www.iusmentis.com/security/passphrasefaq/
● Wikipedia cryptography root article

– http://en.wikipedia.org/wiki/Cryptography

http://www.iusmentis.com/security/passphrasefaq/

