Ethernet and switches

selected topics
Agenda

- Scaling ethernet infrastructure
- VLANs
Build Incrementally

- Start small

Fiber link to distribution switch

Switch

Hosts
Build Incrementally

- As you have demand and money, grow like this:
Build Incrementally

- And keep growing within the same hierarchy:
Build Incrementally

- At this point, you can also add a redundant aggregation switch:
Do not daisy-chain

- Resist the temptation of doing this:
Connect buildings hierarchically
Agenda

- Scaling ethernet infrastructure
- VLANs
Definition

LAN

- Broadcast domain
Local VLANs

Switch

VLAN X

VLAN X nodes

VLAN Y

VLAN Y nodes
Virtual LANs (VLANs)

- Allows us to split switches into separate (virtual) switches
- Only members of a VLAN can see that VLAN’s traffic
- Inter-VLAN traffic must be routed (i.e. go through a router) because they are separate subnets
Some Hosts Need Privacy/Separation
VLAN introduction

- **VLANs provide segmentation based on broadcast domains.**
- VLANs logically segment switched networks based on the functions, project teams, or applications of the organization regardless of the physical location or connections to the network.
- All workstations and servers used by a particular workgroup share the same VLAN, regardless of the physical connection or location.
Local VLANs

- 2 VLANs or more within a single switch
- VLANs address scalability, security, and network management. Routers in VLAN topologies provide broadcast filtering, security, and traffic flow management.
- **Edge ports**, where end nodes are connected, are configured as members of a VLAN
- The switch behaves as several virtual switches, sending traffic only within VLAN members.
- Switches may not bridge any traffic between VLANs, as this would violate the integrity of the VLAN domain.
- Traffic should only be routed between VLANs.
Broadcast domains with VLANs and routers

- Without VLANs, each group is on a different IP network and on a different switch.
- Using VLANs. Switch is configured with the ports on the appropriate VLAN. Still, each group on a different IP network; however, they are all on the same switch.
- What are the broadcast domains in each?

Without VLANs:

- One link per VLAN or a single VLAN Trunk (later)

With VLANs:

- Without VLANs, each group is on a different IP network and on a different switch.
- Using VLANs. Switch is configured with the ports on the appropriate VLAN. Still, each group on a different IP network; however, they are all on the same switch.
- What are the broadcast domains in each?
VLANs

Important notes on VLANs:

- VLANs are assigned to switch ports. There is no “VLAN” assignment done on the host.
- In order for a host to be a part of that VLAN, it must be assigned an IP address that belongs to the proper subnet.

Remember: VLAN = Subnet
VLANs separate broadcast domains == subnets.

- Without VLAN, the ARP would be seen on all subnets.
- Assigning a host to the correct VLAN is a 2-step process:
 - Connect the host to the correct port on the switch.
 - Assign to the host the correct IP address depending on the VLAN membership.

Two VLANs = Two subnets
VLAN operation

- As a device enters the network, it assumes the VLAN membership of the port to which it is attached.
- The default VLAN for every port in the switch is VLAN 1 and cannot be deleted. (This statement does not give the whole story. More in the lab later for interested groups...)
- All other ports on the switch may be reassigned to arbitrary VLANs.
VLANs across switches

- Two switches can exchange traffic from one or more VLANs
- Inter-switch links are configured as trunks, carrying frames from all or a subset of a switch’s VLANs
- Each frame carries a tag that identifies which VLAN it belongs to
VLANs across switches

- VLAN tagging is used when a single link needs to carry traffic for more than one VLAN.
VLANs across switches

This is called “VLAN Trunking”
802.1Q

- The IEEE standard that defines how ethernet frames should be *tagged* when moving across switch trunks.
- This means that switches from *different vendors* are able to exchange VLAN traffic.
802.1Q tagged frame

<table>
<thead>
<tr>
<th>Normal Ethernet frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble: 7</td>
</tr>
<tr>
<td>SFD: 1</td>
</tr>
<tr>
<td>DA: 6</td>
</tr>
<tr>
<td>SA: 6</td>
</tr>
<tr>
<td>Type/Length: 2</td>
</tr>
<tr>
<td>Data: 46 to 1500</td>
</tr>
<tr>
<td>CRC: 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEEE 802.1Q Tagged Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble: 7</td>
</tr>
<tr>
<td>SFD: 1</td>
</tr>
<tr>
<td>DA: 6</td>
</tr>
<tr>
<td>SA: 6</td>
</tr>
<tr>
<td>2 TPI</td>
</tr>
<tr>
<td>2 TAG</td>
</tr>
<tr>
<td>Type/Length: 2</td>
</tr>
<tr>
<td>Data: 46 to 1500</td>
</tr>
<tr>
<td>CRC: 4</td>
</tr>
</tbody>
</table>

- Inserted fields

<table>
<thead>
<tr>
<th>User Priority</th>
<th>CFI</th>
<th>12 bits of VLAN ID to identify 4,096 possible VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 bits</td>
<td>1 bit</td>
<td>12 bits</td>
</tr>
</tbody>
</table>
Tagged vs. Untagged

- Edge ports are not tagged, they are just “members” of a VLAN.
- You only need to tag frames in switch-to-switch links (trunks), when transporting multiple VLANs.
- A trunk can transport both tagged and untagged VLANs.
 - As long as the two switches agree on how to handle those.
VLANS increase complexity

- You can no longer “just replace” a switch
 - Now you have VLAN configuration to maintain
 - Field technicians need more skills
- You have to make sure that all the switch-to-switch trunks are carrying all the necessary VLANs
 - Need to keep in mind when adding/removing VLANs
Good reasons to use VLANs

- You want to segment your network into multiple subnets, but can’t buy enough switches
 - Hide sensitive infrastructure like IP phones, building controls, etc.
- Separate control traffic from user traffic
 - Restrict who can access your switch management address
Bad reasons to use VLANs

- Because you can, and you feel cool 😊
- Because they will completely secure your hosts (or so you think)
- Because they allow you to extend the same IP network over multiple separate buildings
Do not build “VLAN spaghetti”

- Extending a VLAN to multiple buildings across trunk ports
- Bad idea because:
 - Broadcast traffic is carried across all trunks from one end of the network to another
 - Broadcast storm can spread across the extent of the VLAN
 - Maintenance and troubleshooting nightmare