Filtering Spoofed Packets

Network Ingress Filtering (BCP 38)

What are spoofed or forged packets?
Why are they bad?
How to keep them out
A typical connection from an ISP to a customer

Packets from ISP:
IP src = anything
IP dst = customer

Packets from customer:
IP src = customer
IP dst = anything

ISP border router

Route customer network
to customer router

Default route to ISP

Default route to border router

Customer border router

Customer Network
The Problem

- Attackers gain control of thousands or millions of hosts
 - Worm or virus infection
 - Bot nets
- Hosts send forged packets
 - IP source = forgery (random or victim)
 - IP destination = victim
- Forged packets go to victims
 - DNS request, TCP SYN, etc.
- Responses go to random places or other victims
 - DNS response, TCP ACK/RST, ICMP, etc.
Forged packets cause traffic to victims

1: Forgery from attacker: IP src = victim2 IP dst = victim1
2: Packets from customer: IP src = victim2 IP dst = victim1
3: Packets from ISP router to victim1: IP src = victim2 IP dst = victim1
4: Replies from victim1 go to victim2

PC with virus or controlled by attacker

Customer border router

ISP border router

Victim 1

Victim 2

Customer Network
Amplification: multiple forgery sources in the same ISP

Customer border router

ISP border router

Customer border router

Customer Network

Victim 1

Victim 2

Traffic to ISP, victim1, and victim2, all amplified

PC with virus or controlled by attacker
Amplification: multiple forgery sources in different ISPs

Traffic to victim1, and victim2 amplified. Traffic to ISP not amplified.
Amplification: multiple “victim 1”, single “victim 2”

Traffic to victim2 amplified. Traffic to ISP and victim1 not amplified.

PC with virus or controlled by attacker
“Denial of Service” (DoS) attacks

The attacker wants to cause some service to stop working for some victim

Attacker controls many hosts
 - Attacker instructs hosts to send forged packets to victim

Victim gets lots of packets from many sources
 - Distributed Denial of Service (DDoS)
 - Difficult for victim to filter effectively when packets have forged source addresses
Ingress filtering

- ISPs can block the forged packets as they transit from the customer network to the ISP border router
- ISP knows what IP addresses the customer is allowed to use
- ISP can therefore block packets with source IP addresses outside the range that the customer is allowed to use
- This will prevent the attack
Why use Ingress Filtering

- Save bandwidth from ISP to victims by not forwarding forged packets
- If you don't send forged packets, you won't be contacted by investigators
- If you send forged packets, you may eventually be blacklisted by other ISPs
- When your customers are the victims, you will wish that other ISPs had blocked the attack
Simple case: Single-homed customer

- If the customer is single-homed, then the only addresses they are allowed to use are the addresses that the ISP routes to them.
- ISP can easily configure the border router to block all other addresses.
- Cisco feature - uRPF:
 - interface Serial1/2
 - ip verify unicast reverse-path (strict mode)
 - OR
 - ip verify unicast source reachable-via any (loose mode)
Complex case: Multi-homed customer

- If the customer is multi-homed, then they may also use addresses from other ISPs
 - e.g. Satellite downlink from ISP A, uplink to ISP B
- ISPs can still block the forged packets
 - Need to have a list of valid addresses
- Use generic filtering features, such as Cisco access lists
 - Not just one trivial command, but still worth doing
Remote Triggered Black Hole

- Allows you to quickly drop DoS/DDoS traffic at any point in the network

 - Set the black hole path

  ```
  ip route 192.0.2.1 255.255.255.255 null0
  ```

 - Create a logical Null interface
  ```
  interface null0
  no ip unreachables
  ```

 - Create the BGP routing policy that will black hole
  ```
  route-map BLACKHOLE permit 10
  match ip address prefix-list blackhole
  set community 100:666 no-export
  set ip next-hop 192.0.2.1
  ```
Remote Triggered Black Hole

! Let other routes, that don’t match, through route-map BLACKHOLE permit 20

! Add the “bad” routes to your IGP for pull-up
ip route 10.0.0.0 255.255.255.0 null0
ip route 172.16.0.0 255.255.255.0 null0

! Export this policy via BGP
router bgp 100
 neighbor 1.1.1.1 route-map BLACKHOLE out
 network 10.0.0.0 mask 255.255.255.0
 network 172.16.0.0 mask 255.255.255.0
! Define the interesting routes to black hole
! Add more routes to black hole as necessary
ip prefix-list blackhole seq 10 permit 10.0.0.0/24
ip prefix-list blackhole seq 20 permit 172.16.0.0/24
Further Reading

- BCP 38 (RFC 2827)
 http://www.ietf.org/rfc/rfc2827.txt
- Team Cymru
 http://www.cymru.com/
- A few presentations
 http://bgphints.ruud.org/articles/urpf.html
 http://www.nanog.org/mtg-0602/pdf/greenne.ppt