BGP Best Practices

Scalable Infrastructure Workshop
AfNOG 2010
Configuring BGP

Where do we start?
IOS Good Practices

- ISPs should start off with the following BGP commands as a basic template:

  ```
  router bgp 64511
  bgp deterministic-med
  distance bgp 200 200 200
  no synchronization
  no auto-summary
  ```

 Replace with public ASN

- Make ebgp and ibgp distance the same

- If supporting more than just IPv4 unicast neighbours

  ```
  no bgp default ipv4 unicast
  ```

 is also very important and required
BGP in Cisco IOS is permissive by default. Configuring BGP peering without using filters means:

- All best paths on the local router are passed to the neighbour
- All routes announced by the neighbour are received by the local router
- Can have disastrous consequences

Good practice is to ensure that each eBGP neighbour has inbound and outbound filter applied:

```
router bgp 64511
    neighbour 1.2.3.4 remote-as 64510
    neighbour 1.2.3.4 prefix-list as64510-in in
    neighbour 1.2.3.4 prefix-list as64510-out out
```
What is BGP for?

What is an IGP not for?
BGP versus OSPF/ISIS

- **Internal Routing Protocols (IGPs)**
 - examples are ISIS and OSPF
 - used for carrying **infrastructure** addresses
 - **NOT** used for carrying Internet prefixes or customer prefixes
 - design goal is to **minimise** number of prefixes in IGP to aid scalability and rapid convergence
BGP versus OSPF/ISIS

- BGP used internally (iBGP) and externally (eBGP)
 - iBGP used to carry
 - some/all Internet prefixes across backbone
 - customer prefixes
 - eBGP used to
 - exchange prefixes with other ASes
 - implement routing policy
BGP/IGP model used in ISP networks

- Model representation

![Diagram of BGP/IGP model](image)
BGP versus OSPF/ISIS

- **DO NOT:**
 - distribute BGP prefixes into an IGP
 - distribute IGP routes into BGP
 - use an IGP to carry customer prefixes

- YOUR NETWORK WILL NOT SCALE
Aggregation

Quality, not Quantity!
Aggregation

- ISPs receive address block from Regional Registry or upstream provider
- **Aggregation** means announcing the address block only, not subprefixes
- Aggregate should be generated internally
Configuring Aggregation: Cisco IOS

- ISP has 101.10.0.0/19 address block
- To put into BGP as an aggregate:

 router bgp 100
 network 101.10.0.0 mask 255.255.224.0
 ip route 101.10.0.0 255.255.224.0 null0

- The static route is a "pull up" route
 - more specific prefixes within this address block ensure connectivity to ISP’s customers
 - "longest match lookup"
Aggregation

- Address block should be announced to the Internet as an aggregate
- Subprefixes of address block should NOT be announced to Internet unless fine-tuning multihoming
 - And even then care and frugality is required – don’t announce more subprefixes than absolutely necessary
Announcing Aggregate:
Cisco IOS

- Configuration Example

 router bgp 100
 network 101.10.0.0 mask 255.255.224.0
 neighbor 102.102.10.1 remote-as 101
 neighbor 102.102.10.1 prefix-list out-filter out

 ip route 101.10.0.0 255.255.224.0 null0

 ip prefix-list out-filter permit 101.10.0.0/19
 ip prefix-list out-filter deny 0.0.0.0/0 le 32
Announcing an Aggregate

- ISPs who don’t and won’t aggregate are held in poor regard by community
- Registries’ minimum allocation size is now at least a /21 or /22
 - no real reason to see anything much longer than a /22 prefix in the Internet
 - BUT there are currently ~168000 /24s!
The Internet during AfNOG 2009 (April 2009)

- Internet Routing Table Statistics
 - BGP Routing Table Entries: 288336
 - Prefixes after maximum aggregation: 136251
 - Unique prefixes in Internet: 140888
 - Prefixes smaller than registry alloc: 142536
 - /24s announced: 150651
 - only 5797 /24s are from 192.0.0.0/8
 - ASes in use: 31224
The Internet Today (May 2010)

- Current Internet Routing Table Statistics
 - BGP Routing Table Entries: 321324
 - Prefixes after maximum aggregation: 147948
 - Unique prefixes in Internet: 155831
 - Prefixes smaller than registry alloc: 154125
 - /24s announced: 168259
 - only 5730 /24s are from 192.0.0.0/8
 - ASes in use: 33989
Efforts to Improve Aggregation: The CIDR Report

- Initiated and operated for many years by Tony Bates
- Now combined with Geoff Huston’s routing analysis
 www.cidr-report.org
- Results e-mailed on a weekly basis to most operations lists around the world
- Lists the top 30 service providers who could do better at aggregating
Efforts to Improve Aggregation: The CIDR Report

- Also computes the size of the routing table assuming ISPs performed optimal aggregation
- Website allows searches and computations of aggregation to be made on a per AS basis
 - Flexible and powerful tool to aid ISPs
 - Intended to show how greater efficiency in terms of BGP table size can be obtained without loss of routing and policy information
 - Shows what forms of origin AS aggregation could be performed and the potential benefit of such actions to the total table size
 - Very effectively challenges the traffic engineering excuse
Aggregation Potential
Importance of Aggregation

- Size of routing table
 - Memory is no longer the problem
 - Routers can be specified to carry 1 million prefixes

- Convergence of the Routing System
 - This is a problem
 - Bigger table takes longer for CPU to process
 - BGP updates take longer to deal with

- BGP Instability Report tracks routing system update activity
 - http://bgpupdates.potaroo.net/instability/bgpupd.html
The BGP Instability Report

The BGP Instability Report is updated daily. This report was generated on 12 May 2010 06:10 (UTC+1000)

50 Most active ASes for the past 7 days

<table>
<thead>
<tr>
<th>RANK</th>
<th>ASN</th>
<th>UPDs</th>
<th>% Prefixes</th>
<th>UPDs/Prefix</th>
<th>AS NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9829</td>
<td>15451</td>
<td>1.53%</td>
<td>814</td>
<td>18.98 BSNL-NIB National Internet Backbone</td>
</tr>
<tr>
<td>2</td>
<td>8386</td>
<td>12482</td>
<td>1.24%</td>
<td>194</td>
<td>64.34 KOCNET KOCNET-AS</td>
</tr>
<tr>
<td>3</td>
<td>4538</td>
<td>11464</td>
<td>1.14%</td>
<td>281</td>
<td>40.80 ERX-CERNET-BKB China Education and Research Network Center</td>
</tr>
<tr>
<td>4</td>
<td>10113</td>
<td>10582</td>
<td>1.05%</td>
<td>219</td>
<td>48.32 DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD</td>
</tr>
<tr>
<td>5</td>
<td>28477</td>
<td>10192</td>
<td>1.01%</td>
<td>9</td>
<td>1132.44 Universidad Autonoma del Estado de Morelos</td>
</tr>
<tr>
<td>6</td>
<td>8452</td>
<td>10153</td>
<td>1.01%</td>
<td>1324</td>
<td>7.67 TEDATA TEDATA</td>
</tr>
<tr>
<td>7</td>
<td>41786</td>
<td>9037</td>
<td>0.90%</td>
<td>21</td>
<td>430.33 ERTH-YOLA-AS CJSC "Company "ER-Telecom" Yoshkar-Ola</td>
</tr>
<tr>
<td>8</td>
<td>5800</td>
<td>8828</td>
<td>0.87%</td>
<td>220</td>
<td>40.13 DNIC-ASBLK-05800-06055 - DoD Network Information Center</td>
</tr>
<tr>
<td>9</td>
<td>8151</td>
<td>8062</td>
<td>0.80%</td>
<td>1559</td>
<td>5.17 Uninet S.A. de C.V.</td>
</tr>
<tr>
<td>10</td>
<td>29049</td>
<td>7963</td>
<td>0.79%</td>
<td>291</td>
<td>27.36 DELTA-TELECOM-AS Delta Telecom LTD.</td>
</tr>
<tr>
<td>11</td>
<td>14522</td>
<td>7032</td>
<td>0.70%</td>
<td>352</td>
<td>19.98 Satnet</td>
</tr>
<tr>
<td>12</td>
<td>4847</td>
<td>6584</td>
<td>0.65%</td>
<td>354</td>
<td>18.60 CNIX-AP China Networks Inter-Exchange</td>
</tr>
<tr>
<td>13</td>
<td>35931</td>
<td>6315</td>
<td>0.63%</td>
<td>5</td>
<td>1263.00 ARCHIPELAGO - ARCHIPELAGO HOLDINGS INC</td>
</tr>
<tr>
<td>14</td>
<td>30890</td>
<td>5699</td>
<td>0.56%</td>
<td>438</td>
<td>13.01 EVOLVA Evolva Telecom s.r.l.</td>
</tr>
<tr>
<td>15</td>
<td>45899</td>
<td>5429</td>
<td>0.54%</td>
<td>240</td>
<td>22.62 VNPT-AS-VN VNPT Corp</td>
</tr>
<tr>
<td>16</td>
<td>9198</td>
<td>5323</td>
<td>0.53%</td>
<td>251</td>
<td>21.21 KAZTELECOM-AS JSC Kazakhtelecom</td>
</tr>
<tr>
<td>17</td>
<td>14420</td>
<td>5280</td>
<td>0.52%</td>
<td>405</td>
<td>13.04 CORPORACION NACIONAL DE TELECOMUNICACIONES CNT S.A.</td>
</tr>
<tr>
<td>18</td>
<td>17974</td>
<td>5023</td>
<td>0.50%</td>
<td>1046</td>
<td>4.80 TELKOMNET-AS2-AP PT Telekomunikasi Indonesia</td>
</tr>
<tr>
<td>19</td>
<td>3549</td>
<td>4965</td>
<td>0.49%</td>
<td>758</td>
<td>6.55 GBLX Global Crossing Ltd.</td>
</tr>
<tr>
<td>20</td>
<td>36992</td>
<td>4964</td>
<td>0.49%</td>
<td>636</td>
<td>7.81 ETISALAT-MISR</td>
</tr>
<tr>
<td>21</td>
<td>35805</td>
<td>4912</td>
<td>0.49%</td>
<td>625</td>
<td>7.86 UTG-AS United Telecom AS</td>
</tr>
<tr>
<td>22</td>
<td>25620</td>
<td>4666</td>
<td>0.46%</td>
<td>186</td>
<td>25.09 COTAS LTDA.</td>
</tr>
<tr>
<td>23</td>
<td>4795</td>
<td>4549</td>
<td>0.45%</td>
<td>258</td>
<td>17.63 INDOMAT2-ID INDOMAT2 ASN</td>
</tr>
<tr>
<td>RANK</td>
<td>PREFIX</td>
<td>UPDs</td>
<td>% Orig AS -- AS NAME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>200.13.36.0/24</td>
<td>10192</td>
<td>0.93% -- 28487 – Universidad Autonoma del Esestado de Morelos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>188.187.184.0/24</td>
<td>8776</td>
<td>0.80% -- 41786 – ERTH-YOLA-AS CJSC "Company "ER-Telecom" Yoshkar-Ola</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>64.76.40.0/24</td>
<td>4485</td>
<td>0.41% -- 3549 – GBLX Global Crossing Ltd.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>198.140.43.0/24</td>
<td>3757</td>
<td>0.34% -- 35931 – ARCHIPELAGO - ARCHIPELAGO HOLDINGS INC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>193.105.163.0/24</td>
<td>3083</td>
<td>0.28% -- 13004 – SOX Serbian Open Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>206.184.16.0/24</td>
<td>2963</td>
<td>0.27% -- 174 – COGENT Cogent/PSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>205.91.160.0/20</td>
<td>2947</td>
<td>0.27% -- 5976 – DNIC-ASBLK-05800-06055 - DoD Network Information Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>63.211.68.0/22</td>
<td>2558</td>
<td>0.23% -- 35931 – ARCHIPELAGO - ARCHIPELAGO HOLDINGS INC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>81.212.23.0/24</td>
<td>2467</td>
<td>0.23% -- 48754 – SOBIAS-AS SC SOBI SOLUTIONS SRL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>202.92.236.0/24</td>
<td>2455</td>
<td>0.22% -- 9496 – BBIL-AP BHARTI Airtel Ltd.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>143.138.107.0/24</td>
<td>2434</td>
<td>0.22% -- 747 – TAEGU-AS - Headquarters, USA/SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>193.16.43.0/24</td>
<td>2401</td>
<td>0.22% -- 29661 – INTI-AS INTI Autonomous System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>193.16.111.0/24</td>
<td>2338</td>
<td>0.21% -- 15836 – AXAUTSYS ARAX I.S.P.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31557 – IGT-MOLD-NET-AS IGT Communications AS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>202.89.118.0/24</td>
<td>2285</td>
<td>0.21% -- 45670 – SOFTCRYLCINET1-IN #160, North Usman Road, Third Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>203.81.166.0/24</td>
<td>1942</td>
<td>0.18% -- 18399 – BAGAN-TRANSIT-AS Bagan Cybertech IDC & Teleport International Transit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>187.86.61.0/24</td>
<td>1617</td>
<td>0.15% -- 53065 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>124.254.32.0/19</td>
<td>1617</td>
<td>0.15% -- 4847 – CNIX-AP China Networks inter-Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>124.14.64.0/18</td>
<td>1617</td>
<td>0.15% -- 4847 – CNIX-AP China Networks inter-Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>220.113.32.0/20</td>
<td>1616</td>
<td>0.15% -- 4847 – CNIX-AP China Networks inter-Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>124.14.224.0/19</td>
<td>1615</td>
<td>0.15% -- 4847 – CNIX-AP China Networks inter-Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>202.61.214.0/24</td>
<td>1442</td>
<td>0.13% -- 10113 – DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>202.61.216.0/24</td>
<td>1442</td>
<td>0.13% -- 10113 – DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>202.61.170.0/24</td>
<td>1442</td>
<td>0.13% -- 10113 – DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>202.61.219.0/24</td>
<td>1442</td>
<td>0.13% -- 10113 – DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>202.61.229.0/24</td>
<td>1442</td>
<td>0.13% -- 10113 – DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>202.61.215.0/24</td>
<td>1442</td>
<td>0.13% -- 10113 – DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>202.61.217.0/24</td>
<td>1442</td>
<td>0.13% -- 10113 – DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>180.233.225.0/24</td>
<td>1356</td>
<td>0.12% -- 38680 – CMBHK-AS-KR CMB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aggregation: Summary

- Aggregation on the Internet could be **MUCH** better
 - 35% saving on Internet routing table size is quite feasible
 - Tools are available
 - Commands on the router are not hard
 - CIDR-Report webpage

- RIPE Routing WG aggregation recommendation
 - RIPE-399 — www.ripe.net/docs/ripe-399.html
Receiving Prefixes
Receiving Prefixes from downstream peers

- ISPs should only accept prefixes which have been assigned or allocated to their downstream peer

- For example
 - downstream has 100.50.0.0/20 block
 - should only announce this to peers
 - peers should only accept this from them
Receiving Prefixes:
Cisco IOS

- Configuration Example on upstream
  ```
  router bgp 100
  neighbor 102.102.10.1 remote-as 101
  neighbor 102.102.10.1 prefix-list customer in

  ip prefix-list customer permit 100.50.0.0/20
  ip prefix-list customer deny 0.0.0.0/0 le 32
  ```
Receiving Prefixes from upstream peers

- Not desirable unless really necessary
 - special circumstances
- Ask upstream to either:
 - originate a default-route
 - announce one prefix you can use as default
Receiving Prefixes from upstream peers

- **Downstream Router Configuration**

  ```
  router bgp 100
  network 101.10.0.0 mask 255.255.224.0
  neighbor 101.5.7.1 remote-as 101
  neighbor 101.5.7.1 prefix-list infilt in
  neighbor 101.5.7.1 prefix-list outfilt out

  ip prefix-list infilt permit 0.0.0.0/0
  ip prefix-list infilt deny 0.0.0.0/0 le 32

  ip prefix-list outfilt permit 101.10.0.0/19
  ip prefix-list outfilt deny 0.0.0.0/0 le 32
  ```
Receiving Prefixes from upstream peers

- Upstream Router Configuration

  ```
  router bgp 101
  
  neighbor 101.5.7.2 remote-as 100
  neighbor 101.5.7.2 default-originate
  neighbor 101.5.7.2 prefix-list cust-in in
  neighbor 101.5.7.2 prefix-list cust-out out
  
  !
  
  ip prefix-list cust-in permit 101.10.0.0/19
  ip prefix-list cust-in deny 0.0.0.0/0 le 32
  !
  
  ip prefix-list cust-out permit 0.0.0.0/0
  ip prefix-list cust-out deny 0.0.0.0/0 le 32
  ```
Receiving Prefixes from upstream peers

- If necessary to receive prefixes from upstream provider, care is required
 - don’t accept RFC1918 etc prefixes
 - don’t accept your own prefix
 - don’t accept default (unless you need it)
 - don’t accept prefixes longer than /24
Receiving Prefixes

```
router bgp 100
  network 101.10.0.0 mask 255.255.224.0
  neighbor 101.5.7.1 remote-as 101
  neighbor 101.5.7.1 prefix-list in-filter in

  ! Block default
  ip prefix-list in-filter deny 0.0.0.0/0
  ip prefix-list in-filter deny 0.0.0.0/8 le 32
  ip prefix-list in-filter deny 10.0.0.0/8 le 32
  ip prefix-list in-filter deny 101.10.0.0/19 le 32 ! Block local prefix
  ip prefix-list in-filter deny 127.0.0.0/8 le 32
  ip prefix-list in-filter deny 169.254.0.0/16 le 32
  ip prefix-list in-filter deny 172.16.0.0/12 le 32
  ip prefix-list in-filter deny 192.0.2.0/24 le 32
  ip prefix-list in-filter deny 192.168.0.0/16 le 32
  ip prefix-list in-filter deny 224.0.0.0/3 le 32 ! Block multicast
  ip prefix-list in-filter deny 0.0.0.0/0 ge 25 ! Block prefixes >/24
  ip prefix-list in-filter permit 0.0.0.0/0 le 32
```
Generic ISP BGP prefix filter

- This prefix-list MUST be applied to all external BGP peerings, in and out!
- RFC5735 lists many special use addresses
- Check Team Cymru’s bogon pages
 - http://www.cymru.com/Bogons
Prefixes into iBGP
Injecting prefixes into iBGP

- Use iBGP to carry customer prefixes
 - don’t use IGP
- Point static route to customer interface
- Use BGP network statement
- As long as static route exists (interface active), prefix will be in BGP
Router configuration:

network statement

- Example:

```
interface loopback 0
  ip address 215.17.3.1 255.255.255.255
!
interface Serial 5/0
  ip unnumbered loopback 0
  ip verify unicast reverse-path
!
ip route 215.34.10.0 255.255.252.0 Serial 5/0
!
router bgp 100
  network 215.34.10.0 mask 255.255.252.0
```
Injecting prefixes into iBGP

- interface flap will result in prefix withdraw and reannounce
 - use "ip route...permanent"
- many ISPs use redistribute static rather than network statement
 - only use this if you understand why
Router Configuration: redistribute static

- Example:

```plaintext
ip route 215.34.10.0 255.255.252.0 Serial 5/0
! router bgp 100
  redistribute static route-map static-to-bgp
<snip>
! route-map static-to-bgp permit 10
  match ip address prefix-list ISP-block
  set origin igp
<snip>
! ip prefix-list ISP-block permit 215.34.10.0/22 le 30
!```
Injecting prefixes into iBGP

- Route-map ISP-block can be used for many things:
  - setting communities and other attributes
  - setting origin code to IGP, etc

- Be careful with prefix-lists and route-maps
  - absence of either/both means all statically routed prefixes go into iBGP
Configuration Tips
Templates

- Good practice to configure templates for everything
  - Vendor defaults tend not to be optimal or even very useful for ISPs
  - ISPs create their own defaults by using configuration templates
  - Sample iBGP and eBGP templates follow for Cisco IOS
BGP Template – iBGP peers

```
router bgp 100
neighbor internal peer-group
neighbor internal description ibgp peers
neighbor internal remote-as 100
neighbor internal update-source Loopback0
neighbor internal next-hop-self
neighbor internal send-community
neighbor internal version 4
neighbor internal password 7 03085A09
neighbor 1.0.0.1 peer-group internal
neighbor 1.0.0.2 peer-group internal
```
BGP Template – iBGP peers

- Use peer-groups
- iBGP between loopbacks!
- Next-hop-self
  - Keep DMZ and point-to-point out of IGP
- Always send communities in iBGP
  - Otherwise accidents will happen
- Hardwire BGP to version 4
  - Yes, this is being paranoid!
- Use passwords on iBGP session
  - Not being paranoid, some ISPs consider this VERY necessary
Router B:
router bgp 100
network 10.60.0.0 mask 255.255.0.0
neighbor external peer-group
neighbor external remote-as 200
neighbor external description ISP connection
neighbor external remove-private-AS
neighbor external version 4
neighbor external prefix-list ispout out ! “real” filter
neighbor external filter-list 1 out ! “accident” filter
neighbor external route-map ispout out
neighbor external prefix-list ispin in
neighbor external filter-list 2 in
neighbor external route-map ispin in
neighbor external password 7 020A0559
neighbor external maximum-prefix 220000 [warning-only]
neighbor 10.200.0.1 peer-group external
! ip route 10.60.0.0 255.255.0.0 null0 254
BGP Template – eBGP peers

- Remove private ASes from announcements
  - Common omission today

- Use extensive filters, with “backup”
  - Use as-path filters to backup prefix-lists
  - Use route-maps for policy

- Use password agreed between you and peer on eBGP session

- Use maximum-prefix tracking
  - Router will warn you if there are sudden increases in BGP table size, bringing down eBGP if desired
More BGP “defaults”

- Log neighbour changes
  - Log neighbour changes
  - `bgp log-neighbor-changes`

- Enable deterministic MED
  - `bgp deterministic-med`
  - Otherwise bestpath could be different every time BGP session is reset

- Make BGP admin distance higher than any IGP
  - `distance bgp 200 200 200`
Configuration Tips Summary

- Use configuration templates
- Standardise the configuration
- Anything to make your life easier, network less prone to errors, network more likely to scale
- It’s all about scaling – if your network won’t scale, then it won’t be successful
Summary – BGP BCP

- Initial Configuration
- BGP versus IGP
- Aggregation
- Sending & Receiving Prefixes
- Injecting Prefixes into iBGP
- Configuration Tips