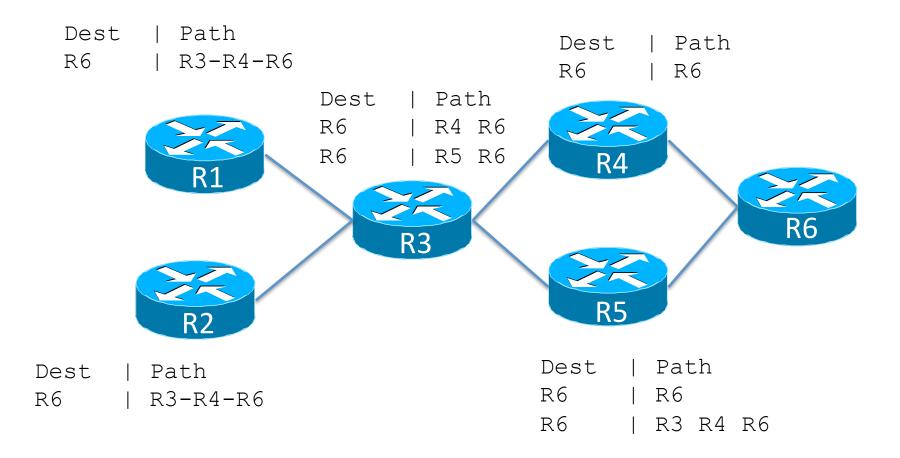

Link-state vs path-vector

	Link-state	Path-vector
Advertisements	Links and costs	Path and distance to networks
Database	Same map at all nodes	Different at each node
Pros	Fast-convergence: source of failure propagated to all nodes	Scalable: lots of information is hidden
Cons	Not scalable: routers cannot support the whole Internet topology	Slow-convergence: lots of intermediate routes are advertised
Examples	IS-IS, OSPF	RIP, EIGRP, BGP

Link-state

Link | Cost R4-R6 | 1 R5-R6 | 1 R3-R4 | 1 R3-R5 | 1 R1-R3 | 1 R2-R3 | 1


Link | Cost R4-R6 | 1 R5-R6 | 1 R3-R4 | 1 R3-R5 | 1 R1-R3 | 1 R2-R3 | 1

Link | Cost R4-R6 | 1 R5-R6 | 1 R3-R4 | 1 R3-R5 | 1 R1-R3 | 1 R2-R3 | 1

Link | Cost R4-R6 | 1 R5-R6 | 1 R3-R4 | 1 R3-R5 | 1 R1-R3 | 1 R2-R3 | 1

Path-vector

