Introduction to IPv6

AFNOG 2013 AR-E Workshop

Early Internet History

- □ Late 1980s
 - Exponential growth of the Internet
- Late 1990: CLNS proposed as IP replacement
- **u** 1991-1992
 - Running out of "class-B" network numbers
 - Explosive growth of the "default-free" routing table
 - Eventual exhaustion of 32-bit address space
- Two efforts short-term vs. long-term
 - More at "The Long and Windy ROAD" http://rms46.vlsm.org/1/42.html

Early Internet History

- CIDR and Supernetting proposed in 1992-3
 - Deployment started in 1994
- IETF "ipng" solicitation RFC1550, Dec 1993
- Proliferation of proposals:
 - TUBA RFC1347, June 1992
 - PIP RFC1621, RFC1622, May 1994
 - CATNIP RFC1707, October 1994
 - SIPP RFC1710, October 1994
 - NIMROD RFC1753, December 1994
 - ENCAPS RFC1955, June 1996
- Direction and technical criteria for ipng choice
 - RFC1752, January 1995

Early Internet History → 1996

- IPv6 Specification (RFC1883) published in December 1995
- Other activities included:
 - Development of NAT, PPP, DHCP,...
 - Some IPv4 address reclamation
 - The RIR system was introduced
- $\square \rightarrow$ Brakes were put on IPv4 address consumption
- IPv4 32 bit address = 4 billion hosts
 - HD Ratio (RFC3194) realistically limits IPv4 to 250 million hosts

Recent Internet History The "boom" years $\rightarrow 2001$

IPv6 Development in full swing

- Rapid IPv4 consumption
- IPv6 specifications sorted out
- (Many) Transition mechanisms developed
- 6bone
 - Experimental IPv6 backbone sitting on top of Internet
 - Participants from over 100 countries
- Early adopters
 - Japan, Germany, France, UK,...

Recent Internet History The "bust" years: 2001 → 2004

- The DotCom "crash"
 - i.e. Internet became mainstream
- □ IPv4:
 - Consumption slowed
 - Address space pressure "reduced"
- Indifference
 - Early adopters surging onwards
 - Sceptics more sceptical
 - Yet more transition mechanisms developed

2004 → 2011

Resurgence in demand for IPv4 address space

- All IPv4 address space was allocated by IANA by 3rd February 2011
- Exhaustion predictions did range from wild to conservative
- ...but by early 2011 IANA had no more!
- ...and what about the market for address space?
- Market for IPv4 addresses:
 - Creates barrier to entry
 - Condemns the less affluent to tyranny of NATs
- □ IPv6 offers vast address space
 - The only compelling reason for IPv6

Current Situation

- General perception is that "IPv6 has not yet taken hold"
 - IPv4 Address run-out has now made it into "headline news"
 - More discussions and run-out plans proposed
 - Private sector still demanding a business case to "migrate"
 - No easy Return on Investment (RoI) computation
- But reality is very different from perception!
 - Something needs to be done to sustain the Internet growth
 - IPv6 or NAT or both or something else?

Internet population

- ~630 million users end of 2002 10% of world pop.
- ~1320 million users end of 2007 20% of world pop.
- Doubles every 5 years (approximately)
- Future? (World pop. ~9B in 2050)
- US uses 92 /8s this is 6.4 IPv4 addresses per person
 - Repeat this the world over...
 - 6 billion population could require 26 billion IPv4 addresses
 - (7 times larger than the IPv4 address pool)

Other Internet Economies:

- China 19.7 IPv4 /8s
- Japan 12.0 IPv4 /8s
- Korea 6.7 IPv4 /8s
- Germany 5.8 IPv4 /8s
- France 5.1 IPv4 /8s
- Source: http://bgp.potaroo.net/iso3166/v4cc.html

Emerging Internet economies need address space:

- China would need more than a /4 of IPv4 address space if every student (320M) is to get an IPv4 address
- India lives behind NATs (using only 2.1 /8s)
- Africa lives behind NATs (using less than 1.5 /8s)

- Mobile Internet introduces new generation of Internet devices
 - PDA (~20M in 2004), Mobile Phones (~1.5B in 2003), Tablet PC
 - Enable through several technologies, eg: 3G, 802.11,...
- Transportation Mobile Networks
 - 1B automobiles forecast for 2008 Begin now on vertical markets
 - Internet access on planes, e.g. Connexion by Boeing
 - Internet access on trains, e.g. Narita Express
- Consumer, Home and Industrial Appliances

■ RFC 1918 is not sufficient for large environments

- Cable Operators (e.g. Comcast NANOG37 presentation)
- Mobile providers (fixed/mobile convergence)
- Large enterprises
- The Policy Development process of the RIRs turned down a request to increase private address space
 - RIR community guideline is to use global addresses instead
 - This leads to an accelerated depletion of the global address space
- Some wanted 240/4 as new private address space
 - But how to back fit onto all TCP/IP stacks released since 1995?

- Large variety of proposals to "help" with IPv6 deployment
 - NAT444
 - Lots of IPv4 NAT
 - Dual Stack Lite
 - Improvement on NAT464 (tunneling IPv4 over IPv6 backbone)
 - Activity of IETF Softwires Working Group
 - NAT64 & IVI
 - Translation between IPv6 and IPv4
 - Activity of IETF Behave Working Group
 - 6rd
 - Dynamic IPv6 tunnel from SP to customer
 - Activity of IETF Softwires Working Group

IPv6 Geo-Politics

Regional and Countries IPv6 Task Force

- Europe www.ipv6-taskforce.org/
 Belgium, France, Spain, Switzerland, UK,...
- North-America www.nav6tf.org/
- Japan IPv6 Promotion Council www.v6pc.jp/en/index.html
- China, Korea, India,...

Relationship

- Economic partnership between governments
 China-Japan, Europe-China,...
- Recommendations and project's funding
 - IPv6 2005 roadmap recommendations Jan. 2002
 - European Commission IPv6 project funding: 6DEPLOY & Euro6IX
- Tax Incentives
 - Japan only 2002-2003 program

Status in Internet Operational Community

- Service Providers get an IPv6 prefix from their regional Internet Registries
 - Very straight forward process when compared with IPv4
- Much discussion amongst operators about transition:
 - NOG experiments of 2008
 - http://www.civil-tongue.net/6and4/
 - What is really still missing from IPv6
 - http://www.nanog.org/mtg-0710/presentations/Bush-v6op-reality.pdf
 - Many presentations on IPv6 deployment experiences

Service Provider Status

- Many transit ISPs have "quietly" made their backbones IPv6 capable as part of infrastructure upgrades
 - Native is common (dual stack)
 - Providers using MPLS use 6PE/6VPE
 - Tunnels still used (unfortunately)
- Today finding IPv6 transit is not as challenging as it was 5 years ago

OS, Services, Applications, Content

Operating Systems

- MacOS X, Linux, BSD Family, many SYS V
- Windows: XP SP2 (hidden away), Vista, 7
- All use IPv6 first if available
 - (MacOS 10.7 has "happy eyeballs")

Applications

- Browsers
 - Firefox has "happy eyeballs"
- E-mail clients, IM, bittorrent,...
- Services
 - DNS, Apache WebServer, E-mail gateways,...
- Content Availability
 - Needs to be on IPv4 and on IPv6

Why are we still waiting...?

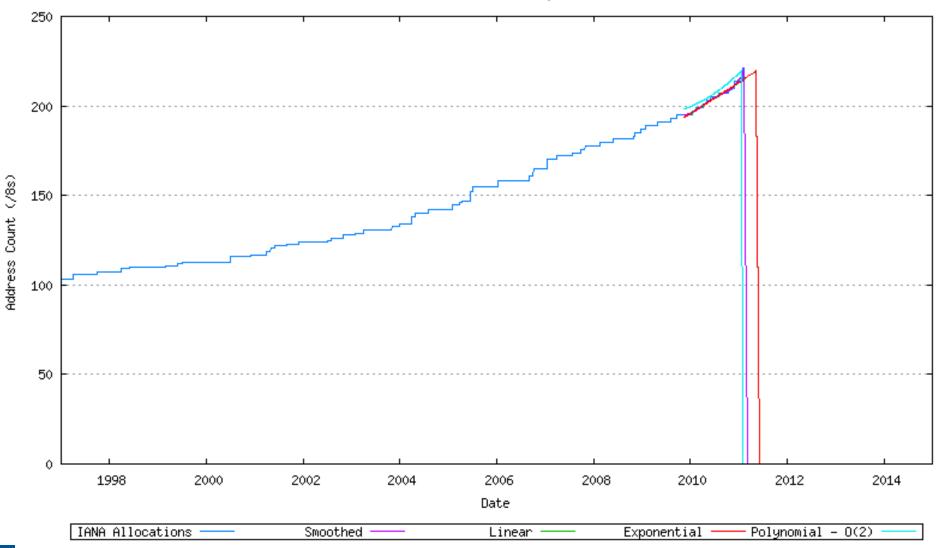
- That killer application?
 - Internet Gaming or Peer to Peer applications?
- IPv4 to run out?
 - Too late, it has!
- Our competitors?
 - Any network deployed in last 3 years will be IPv6 capable
 - Even if not enabled!
- The end-user?
 - The end-user should not have to choose protocols
 - Remember "Turbo" button on early IBM PC clones?

The On-going Debate (1)

IPv6 Multihoming

- Same toolset as IPv4 long term non-scalable
- 'Ultimate Multihoming Solution' no nearer discovery
 LISP is making some progress though
- Early rigid IPv6 address allocation model
 - "One size fits all" barrier to deployment:
 - Only ISPs "should" get IPv6 space from RIRs
 - Enterprises "should" get IPv6 space from ISPs only
 - Routing table entries matter, not the nature of business
 What is an ISP?

The On-going Debate (2)


- Not every IPv4 device is IPv6 capable
 - Do we really need to replicate all IPv4 capability in IPv6 prior to considering deployment?
- "We have enough IPv4"
 - Those with plenty denying those with little/nothing
- Migration versus Co-existence
 - Realistically IPv6 and IPv4 will co-exist for many years
 - Dual-stack operating systems in network equipment makes this trivial

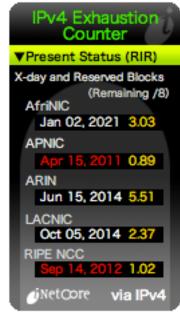
Why not use Network Address Translation?

- Private address space and Network address translation (NAT) could be used instead of IPv6
- But NAT has many serious issues:
 - Breaks the end-to-end model of IP
 - Breaks end-to-end network security
 - Serious consequences for Lawful Intercept
 - Non-NAT friendly applications means NAT has to be upgraded
 - Some applications don't work through NATs
 - Layered NAT devices
 - Mandates that the network keeps the state of the connections
 - How to scale NAT performance for large networks??
 - Makes fast rerouting and multihoming difficult
 - How to offer content from behind a NAT?

Is IPv4 really running out?

IANA Allocations - Projections

Is IPv4 really running out?


Yes!

- IANA IPv4 free pool ran out on 3rd February 2011
- RIR IPv4 free pool will run out soon after
- (APNIC entered final /8 phase on 14 April 2011, RIPE NCC entered final /8 phase on 13 September 2012)

www.potaroo.net/tools/ipv4/

depends on RIR soft-landing policies)

- The runout gadgets and widgets are now watching when the RIR pools will run out:
 - inetcore.com/project/ipv4ec/index_en.html
 - ipv6.he.net/statistics/

IPv4 run-out

- Policy Development process in each RIR region has discussed and implemented many proposals relating to IPv4 run-out, for example:
 - The Last /8
 - □ All RIRs will receive one /8 from the IANA free pool
 - IPv4 address transfer
 - Permits LIRs to transfer address space to each other rather than returning to their RIR
 - Soft landing
 - Reduce the allocation sizes for an LIR as IPv4 pool is depleted
 - IPv4 distribution for IPv6 transition
 - Reserving a range of IPv4 address to assist with IPv6 transition (for Large Scale NATs etc)

Issues Today

Minimal content is available on IPv6

- Notwithstanding ipv6.google.com
- World IPv6 Day on 8th June 2011 helped a little
- World IPv6 Launch on 6th June 2012 helped a little more

Giving IPv6 to customers might confuse

- Browsers, e-mail clients, etc are smart
- But increased tech support if IPv6 version of content is 'down', but IPv4 version works
- Need to "prolong" IPv4 so there is time for all content to be available on IPv6 25

Conclusion

■ There is a need for a larger address space

- IPv6 offers this will eventually replace NAT
- But NAT will be around for a while too
- Market for IPv4 addresses looming also
- Many challenges ahead

Introduction to IPv6

AFNOG 2013 AR-E Workshop