

Network Startup Resource Center

Network Monitoring and Management

NetFlow Overview

01110101101011000110101000

These materials are licensed under the Creative Commons *Attribution-Noncommercial 3.0 Unported* license (http://creativecommons.org/licenses/by-nc/3.0/)

Agenda

1. Netflow

- What it is and how it works
- Uses and applications

2. Generating and exporting flow records

3. Nfdump and Nfsen

- Architecture
- Usage

4. Lab

What is a Network Flow?

- A set of related packets
- Packets that belong to the same transport connection. e.g.
 - TCP, same src IP, src port, dst IP, dst port
 - UDP, same src IP, src port, dst IP, dst port
 - Some tools consider "bidirectional flows", i.e.
 A->B and B->A as part of the same flow

http://en.wikipedia.org/wiki/Traffic_flow_(computer_networking)

Simple flows

- = Packet belonging to flow X
 - = Packet belonging to flow Y

Cisco IOS Definition of a Flow

Unidirectional sequence of packets sharing:

- 1. Source IP address
- 2. Destination IP address
- 3. Source port for UDP or TCP, 0 for other protocols
- 4. Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols
- 5. IP protocol
- 6. Ingress interface (SNMP ifIndex)
- 7. IP Type of Service

IOS: which of these six packets are in the same flows?

	Src IP	Dst IP	Protocol	Src Port	Dst Port
А	1.2.3.4	5.6.7.8	6 (TCP)	4001	80
В	5.6.7.8	1.2.3.4	6 (TCP)	80	4001
С	1.2.3.4	5.6.7.8	6 (TCP)	4002	80
D	1.2.3.4	5.6.7.8	6 (TCP)	4001	80
Е	1.2.3.4	8.8.8.8	17 (UDP)	65432	53
F	8.8.8.8	1.2.3.4	17 (UDP)	53	65432

IOS: which of these six packets are in the same flows?

	Src IP	Dst IP	Protocol	Src Port	Dst Port
Α	1.2.3.4	5.6.7.8	6 (TCP)	4001	80
В	5.6.7.8	1.2.3.4	6 (TCP)	80	4001
С	1.2.3.4	5.6.7.8	6 (TCP)	4002	80
D	1.2.3.4	5.6.7.8	6 (TCP)	4001	80
Е	1.2.3.4	8.8.8.8	17 (UDP)	65432	53
F	8.8.8.8	1.2.3.4	17 (UDP)	53	65432

What about packets "C" and "D"?

Flow Accounting

A summary of all the packets seen in a flow (so far):

- Flow identification: protocol, src/dst IP/port...
- Packet count
- Byte count
- Start and end times
- Maybe additional info, e.g. AS numbers, netmasks

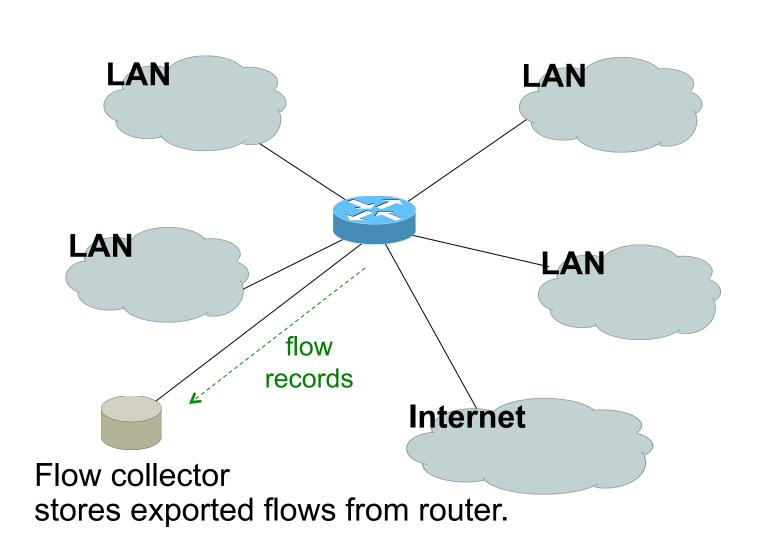
Records traffic volume and type but not content

Uses and Applications

You can answer questions like:

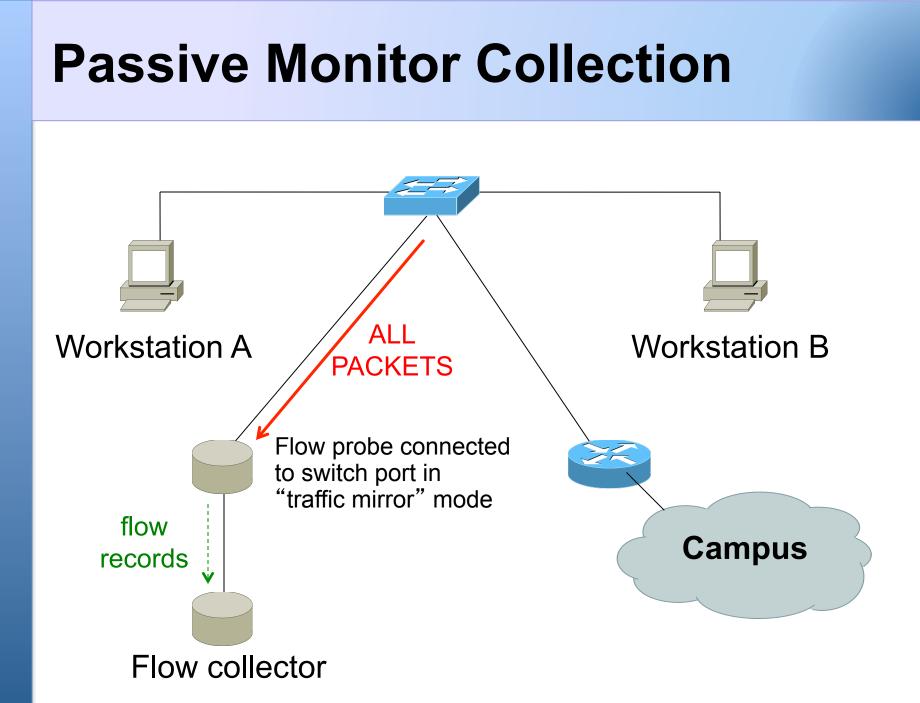
- Which user / department has been uploading / downloading the most?
- Which are the most commonly-used protocols on my network?
- Which devices are sending the most SMTP traffic, and to where?
- Identification of anomalies and attacks
- More fine-grained visualisation (graphing) than can be done at the interface level

Working with flows


- 1. Configure device (e.g. router) to generate flow accounting records
- 2. Export the flows from the device (router) to a collector (PC)
 - Configure protocol version and destination
- 3. Receive the flows, write them to disk
- 4. Analyse the flows

Many tools available, both free and commercial

Where to generate flow records


- 1. On a router or other network device
 - If the device supports it
 - No additional hardware required
 - Might have some impact on performance
- 2. Passive collector (usually a Unix host)
 - Receives a copy of every packet and generates flows
 - Requires a mirror port
 - Resource intensive

Router Collection

Router Collection

- All flows through router can be observed
- Router overhead to process & export flows
- Can select which interfaces Netflow collection is needed and not activate it on others
- If router on each LAN, Netflow can be activated on them to reduce load on core router

Passive Collector

Examples

- softflowd (Linux/BSD)
- pfflowd (BSD)
- ng_netflow (BSD)
- Collector sees all traffic through the network point it is connected on and generates flows
- Relieves router from processing traffic, creating flows and exporting them

Passive Collector cont.

Useful on links:

- with only one entry into the network
- where only flows from one section of the network are needed

Can be deployed in conjunction with an IDS

A thought:

Your network probably already has a device which is keeping track of IP addresses and port numbers of traffic flowing through it.

What is it?

Flow Export Protocols

- Cisco Netflow, different versions
 - v5: widely deployed
 - v9: newer, extensible, includes IPv6 support
- IP Flow Information Export (IPFIX):
 - IETF standard, based on Netflow v9
- **sFlow**: Sampling-based, commonly found on switches
- **jFlow**: Juniper
- We use Netflow, but many tools support multiple protocols

Cisco Netflow

- Unidirectional flows
- IPv4 unicast and multicast
 - (IPv6 in Netflow v9)
- Flows exported via UDP
 - Choose a port. No particular standard, although 2055 and 9996 are commonly used
- Supported on IOS, ASA and CatOS platforms - but with different implementations

Cisco IOS Configuration

- Configured on each input interface
 modern IOS allows both input and output
- Define the version
- Define the IP address and port of the collector (where to send the flows)
- Optionally enable aggregation tables
- Optionally configure flow timeout and main (v5) flow table size
- Optionally configure sample rate

Configuring Netflow: the old way

Enable CEF

- ip cef
- ipv6 cef

Enable flow on each interface

- ip route cache flow
- OR
- ip flow ingress
- ip flow egress

Exporting Flows to a collector

```
ip flow-export version [5|9] [origin-as|peer-as]
ip flow-export destination <x.x.x.x> <udp-port>
```

"Flexible Netflow": the new way

- Only way to monitor IPv6 flows on modern IOS
- Start using it now IPv6 is coming / here
- Many mind-boggling options available, but basic configuration is straightforward

Flexible netflow configuration

• Define one or more exporters

flow exporter EXPORTER-1
 destination 192.0.2.99
 transport udp 9996
 source Loopback0
 template data timeout 300

Define one or more flow monitors

flow monitor FLOW-MONITOR-V4
exporter EXPORTER-1
cache timeout active 300
record netflow ipv4 original-input
flow monitor FLOW-MONITOR-V6
exporter EXPORTER-1
cache timeout active 300
record netflow ipv6 original-input

Flexible netflow configuration

Apply flow monitors to interface

interface GigabitEthernet0/0/0
ip flow monitor FLOW-MONITOR-V4 input
ip flow monitor FLOW-MONITOR-V4 output
ipv6 flow monitor FLOW-MONITOR-V6 input
ipv6 flow monitor FLOW-MONITOR-V6 output

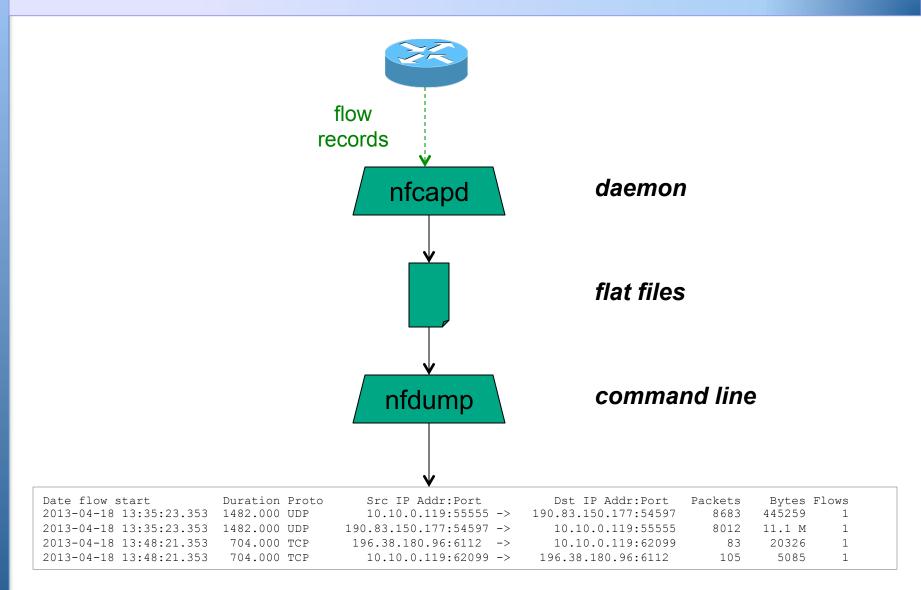
"Top-talkers"

You can summarize flows directly on the router, e.g.

show flow monitor FLOW-MONITOR-V4 cache aggregate ipv4 source address ipv4 destination address sort counter bytes top 20

Yes, that's one long command!

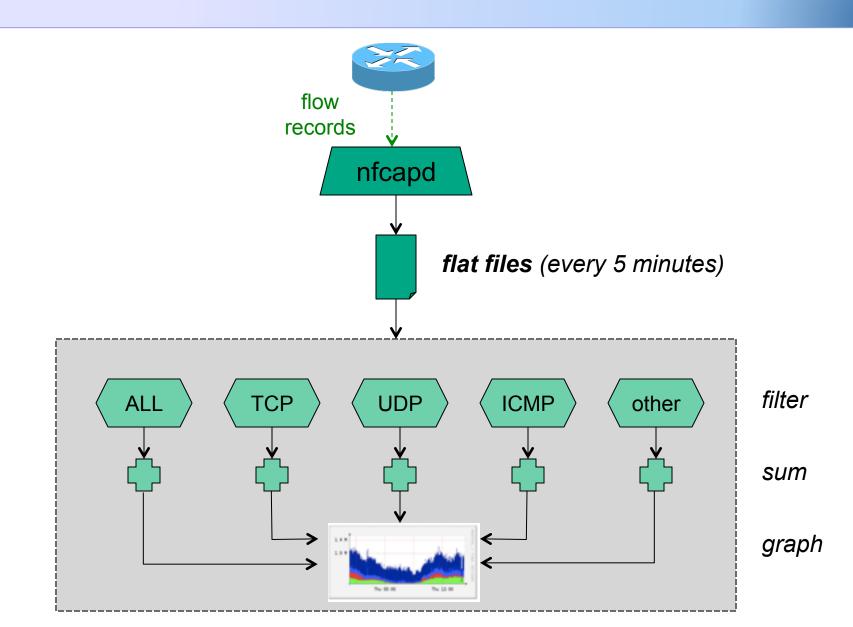
Old command "show ip flow top-talkers" sadly gone, but you could make an alias


- conf t
- alias exec top-talkers show flow..

Questions?

Collecting flows: nfdump

- Free and open source Runs on collector
- *nfcapd* listens for incoming flow records and writes them to disk (flat files)
 - typically starts a new file every 5 minutes
- *nfdump* reads the files and turns them into human-readable output
- nfdump has command-line options to filter and aggregate the flows


nfdump architecture

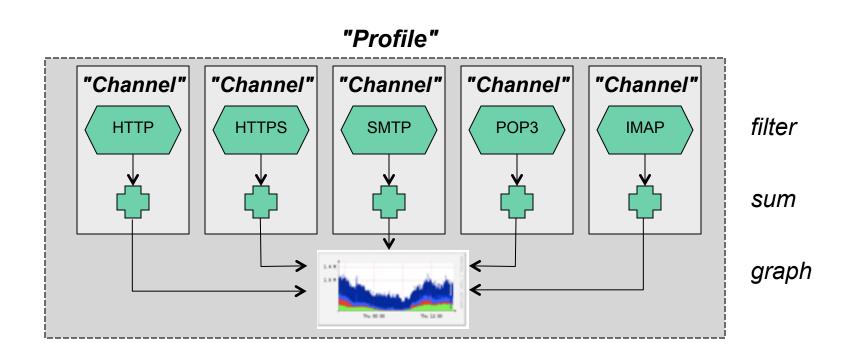
Analysing flows: nfsen

- Companion to nfdump
- Web GUI
- Creates RRD graphs of traffic totals
- Lets you zoom in to a time of interest and do nfdump analysis
- Manages nfcapd instances for you
 - Can run multiple nfcapd instances for listening to flows from multiple routers
- Plugins available like port tracker, surfmap

nfsen architecture

nfsen: points to note

- Every 5 minutes nfcapd starts a new file, and nfsen processes the previous one
- Hence each graph point covers 5 minutes
- The graph shows you the *total* of selected traffic in that 5-minute period
- To get more detailled information on the individual flows in that period, the GUI lets you drill down using nfdump


Demonstration

Now we will use nfsen to find biggest users of bandwidth

Profiles and Channels

- A "channel" identifies a type of traffic to graph, and a "profile" is a collection of channels which can be shown together
- You can create your own profiles and channels, and hence graphs. e.g.
 - Total HTTP, HTTPS, SMTP traffic (etc)
 - Traffic to and from the Science department
 - •
- Use filters to define the traffic of interest

Profiles and Channels

References – Tools

nfdump and nfsen:

http://nfdump.sourceforge.net/ http://nfsen.sourceforge.net/ http://nfsen-plugins.sourceforge.net/

pmacct and pmgraph:

http://www.pmacct.net/ http://www.aptivate.org/pmgraph/

flow-tools:

http://www.splintered.net/sw/flow-tools

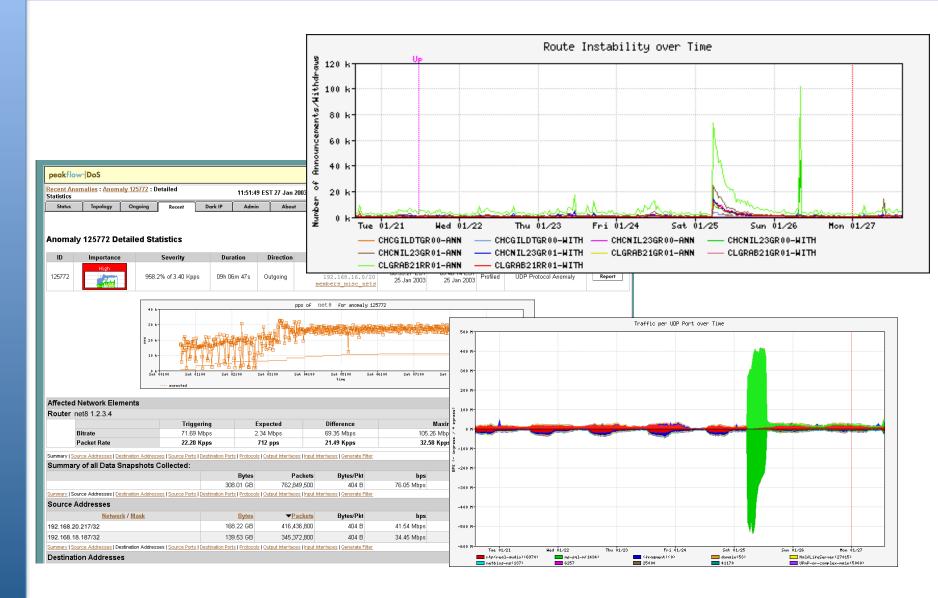
References – Further Info

- WikiPedia: http://en.wikipedia.org/wiki/Netflow
- IETF standards effort: http://www.ietf.org/html.charters/ipfix-charter.html
- Abilene NetFlow page
 http://abilene-netflow.itec.oar.net/
- Cisco Centric Open Source Community http://cosi-nms.sourceforge.net/related.html
- Cisco NetFlow Collector User Guide
 http://www.cisco.com/en/US/docs/net_mgmt/netflow_collection_engine/6.0/tier_one/
 user/guide/user.html

The end

(Additional reference materials follow)

Filter examples


all traffic any proto tcp only TCP traffic dst host 1.2.3.4 only traffic to 1.2.3.4 dst net 10.10.1.0/24 only traffic to that range only traffic <u>not</u> to that range not dst net 10.10.1.0/24 only TCP with source port 80 proto tcp and src port 80 dst net 10.10.1.0/24 or dst net 10.10.2.0/24 only traffic to those nets dst net 10.10.1.0/24 and proto tcp and src port 80 only HTTP response traffic to that net (dst net 10.10.1.0/24 or dst net 10.10.2.0/24) and proto tcp and src port 80 ...more complex combinations possible

Flows and Applications: More Examples

Uses for NetFlow

- Problem identification / solving
 - Traffic classification
 - DoS Traceback (some slides by Danny McPherson)
- Traffic Analysis and Engineering
 - Inter-AS traffic analysis
 - Reporting on application proxies
- Accounting (or billing)
 - Cross verification from other sources
 - Can cross-check with SNMP data

Detect Anomalous Events: SQL "Slammer" Worm*

Flow-based Detection (cont)*

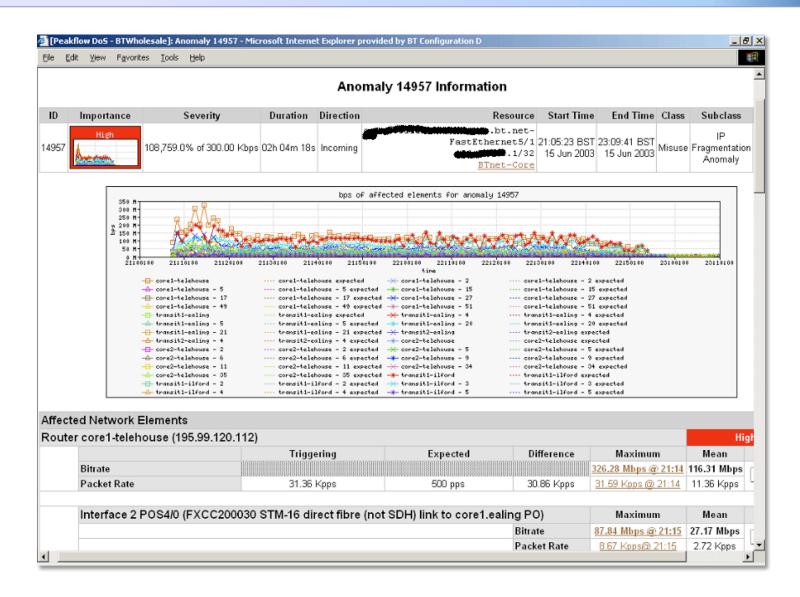
Once baselines are built anomalous activity can be detected

- Pure rate-based (pps or bps) anomalies may be legitimate or malicious
- Many misuse attacks can be immediately recognized, even without baselines (e.g., TCP SYN or RST floods)
- Signatures can also be defined to identify "interesting" transactional data (e.g., proto udp and port 1434 and 404 octets(376 payload) == slammer!)
- Temporal compound signatures can be defined to detect with higher precision

Flow-based Commercial Tools...*

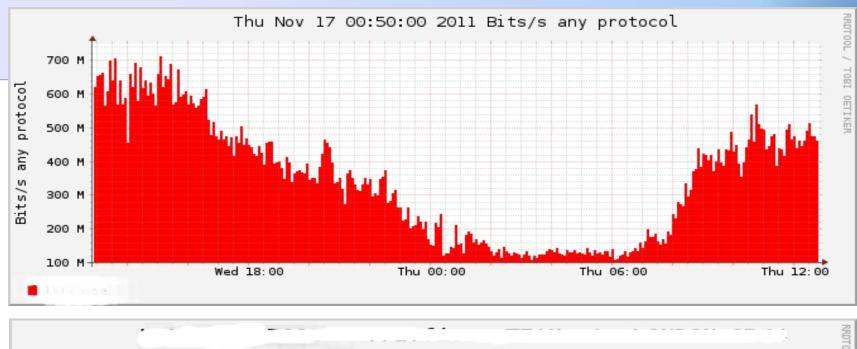
Anomaly 150228

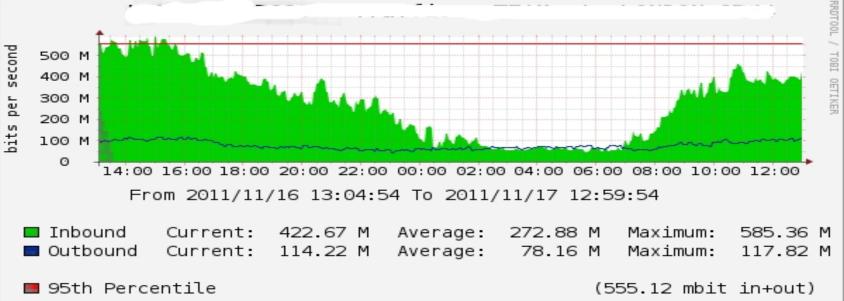
Get Report: PDF XML


ID	Importance	Duration	Start Time	Direction	Туре	Resource
150228	High 130.0% of 2 Kpps	17 mins	03:34, Aug 16	Incoming	Bandwidth (Profiled)	Microsoft 207.46.0.0/16 <u>windowsupdate.com</u>

Traffic C	haracterization	3 k			:		pps of	affe	ected e	lement	s for a	anomaly	150228		
Sources	204.38.130.0/24	2.5 k		1	_	B									
	204.38.130.192/26	2 k		, <u> </u>	-B					P					
	1024 - 1791	å 1.5 k	_									<u> </u>			
Destination	207.46.248.234/32	1 k													
	80 (http)	0.5 k	_												
Protocols	tcp (6)	0 k 03:	36:00	03::	38:00	03:4	0:00	03:42	2:00	03:44:	:00	03:46:00	03:48:00	03:50:00	03:52:00
TCP Flags	S (0x02)			1-chi3			n1-			time					

Affected Network Elements		Expected	Obser	ved bps	Observ	ed pps
	Importance	pps	Max	Mean	Max	Mean
Router nl-chi3 198.110.131.125	High					
Interface 67 at-1/1/0.14 pvc to WMU	, ,	26	832 K	563.1 K	2.6 K	1.7 K Detai


Anomaly Comments


Commercial Detection: A Large Scale DOS Attack

Accounting

Flow based accounting can be a good supplement to SNMP based accounting.

Cisco Netflow Versions

NetFlow Version 1

- Key fields: Source/Destination IP, Source/Destination Port, IP Protocol, ToS, Input interface.
- Accounting: Packets, Octets, Start/End time, Output interface
- Other: Bitwise OR of TCP flags.
- Does not have sequence numbers no way to detect lost flows
- Obsolete

NetFlow Versions 2-4

- Cisco internal
- Were never released

NetFlow v5

- Key fields: Source/Destination IP, Source/Destination Port, IP Protocol, ToS, Input interface.
- Accounting: Packets, Octets, Start/End time, Output interface.
- Other: Bitwise OR of TCP flags, Source/Destination AS and IP Mask.
- Packet format adds sequence numbers for detecting lost exports.
- IPv4 only

NetFlow v8

- Aggregated v5 flows.
- Not all flow types available on all equipments
- Much less data to post process, but loses fine granularity of v5 – no IP addresses.

NetFlow v9

- IPv6 support
- Additional fields like MPLS labels
- Builds on earlier versions
- Periodically sends "template" packet, all flow data fields reference the template