Recap

- DNS is a distributed database
- Stub asks Resolver for information
- Resolver traverses the DNS delegation tree to find Authoritative nameserver which has the information requested
- Bad configuration of authoritative servers can result in broken domains
DNS Replication

- For every domain, we need more than one authoritative nameserver with the same information (RFC 2182)
- Data is entered in one server (Master) and replicated to the others (Slave(s))
- Outside world cannot tell the difference between master and slave
 - NS records are returned in random order for equal load sharing
- Used to be called "primary" and "secondary"
Slaves connect to Master to retrieve copy of zone data

- The master does not "push" data to the slaves
When does replication take place?

- Slaves poll the master periodically - called the "Refresh Interval" - to check for new data
 - Originally this was the only mechanism
- With new software, master can also notify the slaves when the data changes
 - Results in quicker updates
- The notification is unreliable (e.g. network might lose a packet) so we still need checks at the Refresh Interval
Serial Numbers

- Every zone file has a Serial Number
- Slave will only copy data when this number INCREASES
 - Periodic UDP query to check Serial Number
 - If increased, TCP transfer of zone data
- It is your responsibility to increase the serial number after every change, otherwise slaves and master will be inconsistent
Recommended serial number format: YYYYMMDDDDNN

- YYYY = year
- MM = month (01-12)
- DD = day (01-31)
- NN = number of changes today (00-99)

 - e.g. if you change the file on 23rd April 2007, the serial number will be 2008052700. If you change it again on the same day, it will be 2008052701.
Serial Numbers: Danger 1

- If you ever decrease the serial number, the slaves will never update again until the serial number goes above its previous value.
- RFC1912 section 3.1 explains a method to fix this problem.
- At worst, you can contact all your slaves and get them to delete their copy of the zone data.
Serial Numbers: Danger 2

- Serial no. is a 32-bit unsigned number
- Range: 0 to 4,294,967,295
- Any value larger than this is silently truncated
- e.g. 200805270000 (note extra digit)
 \[= 4\text{ACE}4\text{869}8 \text{ (hex)}\]
 \[= \text{ACE}4\text{869}8 \text{ (32 bits)}\]
 \[= 2900657816\]
- If you make this mistake, then later correct it, the serial number will have decreased
Configuration of Master

- /etc/namedb/named.conf points to zone file (manually created) containing your RRs
- Choose a logical place to keep them
 - e.g. /usr/local/etc/namedb/master/tiscali.co.uk
 - or /usr/local/etc/namedb/master/uk.co.tiscali

    ```
    zone "example.com" {
        type master;
        file "master/example.com";
        allow-transfer { 192.188.58.126;
                          192.188.58.2; };
    }
    ```
Configuration of Slave

- named.conf points to IP address of master and location where zone file should be created
- Zone files are transferred automatically
- Don't touch them!

```plaintext
zone "example.com" {
    type slave;
    masters { 192.188.58.126; }
    file "slave/example.com";
    allow-transfer { none; };
}
```
Master and Slave

- It's perfectly OK for one server to be Master for some zones and Slave for others
- That's why we recommend keeping the files in different directories
 - /usr/local/etc/namedb/master/
 - /usr/local/etc/namedb/slave/
 - (also, the slave directory can have appropriate permissions so that the daemon can create files)
allow-transfer { ... }

- Remote machines can request a transfer of the entire zone contents
- By default, this is permitted to anyone
- Better to restrict this
- You can set a global default, and override this for each zone if required

```plaintext
options {
    allow-transfer { 127.0.0.1; };
}
```
Structure of a zone file

- Global options
 - $TTL 1d
 - Sets the default TTL for all other records
- SOA RR
 - "Start Of Authority"
 - Housekeeping information for the zone
- NS RRs
 - List all the nameservers for the zone, master and slaves
- Other RRs
 - The actual data you wish to publish
Format of a Resource Record

- One per line (except SOA can extend over several lines)
- If you omit the Domain Name, it is the same as the previous line
- TTL shortcuts: e.g. 60s, 30m, 4h, 1w2d
- If you omit the TTL, uses the $TTL default value
- If you omit the Class, it defaults to IN
- Type and Data cannot be omitted
- Comments start with SEMICOLON (;)

```
www          3600  IN    A    212.74.112.80
Domain       TTL    Class Type  Data
```
Shortcuts

- If the Domain Name does not end in a dot, the zone's own domain ("origin") is appended.
- A Domain Name of "@" means the origin itself.
- e.g. in zone file for example.com:
 - @ means example.com.
If you write this...

```plaintext
$TTL 1d
@                       SOA ( ... )
NS  ns0
NS  ns0.as9105.net.
; Main webserver
www                     A   212.74.112.80
MX  10 mail

example.com.     86400 IN  SOA ( ... )
example.com.     86400 IN  NS  ns0.example.com.
example.com.     86400 IN  NS  ns0.as9105.net.
www.example.com.  86400 IN  A   212.74.112.80
www.example.com.  86400 IN  MX  10 mail.example.com.
```

... it becomes this

```plaintext
example.com.     86400 IN  SOA ( ... )
example.com.     86400 IN  NS  ns0.example.com.
example.com.     86400 IN  NS  ns0.as9105.net.
www.example.com.  86400 IN  A   212.74.112.80
www.example.com.  86400 IN  MX  10 mail.example.com.
```
Format of the SOA record

$TTL 1d

@ 1h IN SOA ns1.example.net. joe.pooh.org. (2004030300 ; Serial 8h ; Refresh 1h ; Retry 4w ; Expire 1h) ; Negative

IN NS ns1.example.net.
IN NS ns2.example.net.
IN NS ns1.othernetwork.com.
Format of the SOA record

- **ns1.example.net.**
 - hostname of master nameserver

- **jabley.hopcount.ca.**
 - E-mail address of responsible person, with "@" changed to dot, and trailing dot

- Serial number

- Refresh interval
 - How often Slave checks serial number on Master

- Retry interval
 - How often Slave checks serial number if the Master did not respond
Format of the SOA record (cont)

- **Expiry time**
 - If the slave is unable to contact the master for this period of time, it will delete its copy of the zone data

- **Negative / Minimum**
 - Old software used this as a minimum value of the TTL
 - Now it is used for negative caching: indicates how long a cache may store the non-existence of a RR

- **RIPE-203 has recommended values**
 - http://www.ripe.net/ripe/docs/dns-soa.html
Format of NS records

- List all authoritative nameservers for the zone - master and slave(s)
- Must point to HOSTNAME not IP address

$$TTL\ 1\ d$$

@ 1h IN SOA ns1.example.net. joe.pooh.org. (2004030300 ; Serial 8h ; Refresh 1h ; Retry 4w ; Expire 1h) ; Negative

IN NS ns1.example.net.
IN NS ns2.example.net.
IN NS ns1.othernetwork.com.
Format of other RRs

- IN A 1.2.3.4
- IN MX 10 mailhost.example.com.
 - The number is a "preference value". Mail is delivered to the lowest-number MX first
 - Must point to HOSTNAME not IP address
- IN CNAME host.example.com.
- IN PTR host.example.com.
- IN TXT "any text you like"
When you have added or changed a zone file:

- Remember to increase the serial number!

- `named-checkzone example.com /usr/local/etc/namedb/master/example.com`
 - bind 9 feature
 - reports zone file syntax errors; correct them!

- `named-checkconf`
 - reports errors in named.conf

- `rndc reload`
 - or: `rndc reload example.com`

- `tail /var/log/messages`
These checks are ESSENTIAL

- If you have an error in named.conf or a zone file, named may continue to run but will not be authoritative for the bad zone(s)
- You will be lame for the zone without realising it
- Slaves will not be able to contact the master
- Eventually (e.g. 4 weeks later) the slaves will expire the zone
- Your domain will stop working
Other checks you can do

- `dig +norec @x.x.x.x example.com. soa`
 - Check the AA flag
 - Repeat for the master and all the slaves
 - Check the serial numbers match

- `dig @x.x.x.x example.com. axfr`
 - "Authority Transfer"
 - Requests a full copy of the zone contents over TCP, as slaves do to master
 - This will only work from IP addresses listed in the allow-transfer {...} section
So now you have working authoritative nameservers!

- But none of this will work until you have delegation from the domain above
- That is, they put in NS records for your domain, pointing at your nameservers
- You have also put NS records within the zone file
- The two sets should match
Any questions?
TOP TEN ERRORS in authoritative nameservers

● All operators of auth nameservers should read RFC 1912
 – Common DNS Operational and Configuration Errors
● And also RFC 2182
 – Selection and Operation of Secondary DNS servers
1. Serial number errors

- Forgot to increment serial number
- Incremented serial number, then decremented it
- Used serial number greater than 2^{32}

Impact:
- Slaves do not update
- Master and slaves have inconsistent data
- Caches will sometimes get the new data and sometimes old - intermittent problem
2. Comments in zone files starting ' #' instead of ' ; '

- Syntax error in zone file
- Master is no longer authoritative for the zone
- Slaves cannot check SOA
- Slaves eventually expire the zone, and your domain stops working entirely
- Use "named-checkzone"
- Use "tail /var/log/messages"
3. Other syntax errors in zone files

- e.g. omitting the preference value from MX records
- Same impact
4. Missing the trailing dot

; zone example.com.
@ IN MX 10 mailhost.example.com

becomes

@ IN MX 10 mailhost.example.com.example.com.

; zone 2.0.192.in-addr.arpa.
1 IN PTR host.example.com

becomes

1 IN PTR host.example.com.2.0.192.in-addr.arpa.
5. NS or MX records pointing to IP addresses

- They must point to hostnames, not IP addresses
- Unfortunately, a few mail servers do accept IP addresses in MX records, so you may not see a problem with all remote sites
6. Slave cannot transfer zone from master

- Access restricted by allow-transfer {...} and slave not listed
- Or IP filters not configured correctly
- Slave will be lame (non-authoritative)
7. Lame delegation

- You cannot just list any nameserver in NS records for your domain
- You must get agreement from the nameserver operator, and they must configure it as a slave for your zone
- At best: slower DNS resolution and lack of resilience
- At worst: intermittent failures to resolve your domain
8. No delegation at all

- You can configure "example.com" on your nameservers but the outside world will not send requests to them until you have delegation.

- The problem is hidden if your nameserver is acting both as your cache and as authoritative nameserver.

- Your own clients can resolve www.example.com, but the rest of the world cannot.
9. Out-of-date glue records

- See later
10. Not managing TTL correctly during changes

- e.g. if you have a 24 hour TTL, and you swing www.example.com to point to a new server, then there will be an extended period when some users hit one machine and some hit the other

- Follow the procedure:
 - Reduce TTL to 10 minutes
 - Wait at least 24 hours
 - Make the change
 - Put the TTL back to 24 hours
Practical

- Create a new domain
- Set up master and slave nameservice
- Obtain delegation from the domain above
- Test it