Deployment

About this presentation

Based on previous talks by Joel Jaeggli, Evelyn Namara and NSRC, with
thanks!

You can access this presentation at:
e Online: http://afnog.github.io/sse/apache/
» Local: http://www.ws.afnog.org/afnog2016/sse/apache/index.html
» Github: https://github.com/afnog/sse/blob/master/apache/presentation.md

 Download PDF:
http://www.ws.afnog.org/afnog2016/sse/apache/presentation.pdf

Acknowledgements:

» Cover photo by MarianZubak at en.wikipedia, CC BY 2.5

2/26

http://afnog.github.io/sse/apache/
http://www.ws.afnog.org/afnog2016/sse/apache/index.html
https://github.com/afnog/sse/blob/master/apache/presentation.md
http://www.ws.afnog.org/afnog2016/sse/apache/presentation.pdf
https://commons.wikimedia.org/w/index.php?curid=3402935

What is Deployment

Now you have this pretty shiny new thing!

» E.g. a web service, mail service, storage service
How do we make it:

» Reliable

» Scalable

e Secure

 Efficient (cheap)

o Fast

For heavy load (thousands of users?)

3/26

What is Deployment

 Wrong time to ask!
e Needs to have been designed for all this (architecture)

» Better hope the designers thought of it!

4/26

Design for Deployment

So how do we design something:
» Reliable

Scalable

Secure

Efficient (cheap)

Fast

5/26

Design for Deployment

Two ways: scale UP (bigger boxes) or scale OUT.

» Scale UP is appropriate when:
o size is limited (e.g. internal service for <1000 users) and

o reliability is not critical (<99% uptime) so you can restore from backups

e Otherwise you must scale OUT

6/26

Scaling UP

Scaling UP is boring:
» More expensive boxes and disks
e RAID arrays
o Large backups
» Slow restores
e Hard to move
» More complicated when service is layered (e.g. web app + database)

« Ultimately limited by how much (data/CPU) you can fit in 1-2 instances

7126

Scaling OUT

Build it out of smaller things (microservices) which are:
» Reliable

e Secure

Small (cheap)

Efficient (cheap)
e Fast
And connect them using an architecture which also is.

Note: the small things do not have to be scalable if your architecture scales!

AN
—o
g} AppO1
\] requests app.com f—w’ 1\ /—\ Q
\ o | (j ’T‘ c—o
User Internet Load Balancer App02

8/26

https://www.digitalocean.com/company/blog/horizontally-scaling-php-applications/

Organisation

What else is a large system organised out of smaller components?

9/26

Organisation

What else is a large system organised out of smaller
components?

WE ARE!

Note the hierarchical structure of complex organisms (see
right)

_- | Organelles: The nucleus,
s | dyed blue in these onion

cells, is an example of an

. | organelle.

o

Cells: Human blood cells.

.

Tissues: Human skin
tissue.

-~

Organs and Organ
Systems: Organs, such as
the stomach and intestine,
make up the human
digestive system.

o4 | Organisms, Populations,
£ | and Communities: In a
forest, each pine tree is an

organism. Together, all the

] | pine trees make up a

population. All the plant and
animal species in the forest
comprise a community.

Ecosystems: This coastal
ecosystem in the
southeastern United States
includes living organisms
and the environment in
which they live.

-

The Biosphere:
Encompasses all the
ecosystems on Earth.

10/26

https://www.boundless.com/biology/textbooks/boundless-biology-textbook/the-study-of-life-1/themes-and-concepts-of-biology-49/levels-of-organization-of-living-things-269-11402/

Characteristics of Life

RED GIRL:

Respiration (energy use)

Excretion (energy use)

Death (plan for unit loss)

Growth (possible but better avoided)
Irritability (responds to events, I/O)
Reproduction (create from saved image)

Locomotion (migration)

11/26

Microservices

Need to be/should be easy to:
e Maintain
e Monitor
 Manage

e Move

12 /26

Microservices

Examples of microservices (microservers):
» File server
« Database server
e RADIUS server
o LDAP server
o HTTP reverse proxy/load balancer/SSL wrapper
 Static content HTTP server
 PHP/Python/Node.js server
o SMTP server
o IMAP server/load balancer
e DNS server

So how do we make these things? 13 /26

Microservice outsourcing

Most of these you can buy as a service online:

File server: not exactly, but Amazon S3/OpenStack Swift

Database server: Amazon RDS, OpenStack Trove

Authentication service: Amazon Directory Service (hosted AD), OpenID
HTTP reverse proxy/load balancer/SSL wrapper: CloudFront

Static content HTTP server: CDN (CloudFront etc)

PHP server: most web hosts

Ruby/Python/Node.js server: Engine Yard, Heroku

SMTP server: MailChimp, Mandrill, SendGrid

IMAP server/load balancer: not really

DNS server: Dyn, Amazon Route 53, most web hosts

But if you want to build your own, read on...

14 /26

Microserver template

Application/daemon

Reliable

Secure

Small (cheap)

Efficient (cheap)

Which application/daemon do we run, and how do we use it to achieve each
of these requirements?

15/26

File microserver

Application/daemon: SMB server (Samba) or NFS or cluster FS

Reliable -> replicated to another unit (DRBD or cluster FS)

Secure:

o Against all kinds of unauthorised access?
o Network encryption

o Authenticate against RADIUS/LDAP/Kerberos

Small (cheap) -> 20-100GB size?

o Forces us to break up our large storage requirements

Efficient (cheap):
o SMB and NFS are both lightweight

o Network and disk encryption are costs - do we need them?

16 /26

SQL database microserver

Application/daemon: MySQL or PostgreSQL

Reliable -> database replication

Secure:

o Built-in authentication and authorisation

o No external authentication?

Small (cheap) -> 20GB size?

o Forces us to break up our large database requirements (AKA sharding)
o Design for isolation where possible, e.g. one DB per customer

o Per-customer DBs are too small, so combine multiple DBs per server with
migration plan

Efficient (cheap):
o SQL database servers are heavyweight!
o Only master servers are writable!

o Queries are expensive, so run them on read-only slaves

17/26

P microserver

Application/daemon: Nginx
Reliable -> stateless

Secure:

o Nginx is small (but had many vulnerabilities)
Small (cheap) -> Nginx is lightweight

Efficient (cheap) -> Nginx is lightweight

18 /26

Routing

How to connect up these services:
 How do people access them (front end)

 How do they locate/find each other?

o How does webserver B know which database/IMAP server to use for this
customer?

19/26

Routing

This is how we actually build a service out of simple
components (architecture):

AN
—c
& AppO1
equests app.com ﬁ»)\ D Q
A —o
() —0c
User Internet Load Balancer App02

« Applies at every level: front end->web server, web
server->database/IMAP, IMAP->file server

« DNS, load balancer or application logic

 What happens if the user's host instance is down?
o Need an automated fault detection and failover system!

o Probably need to engineer this yourself

« Ignore the problem and hard-code it like we always
did before

20/26

https://www.digitalocean.com/company/blog/horizontally-scaling-php-applications/

Use the DNS to send clients (users or applications) to an

RO Ut| ng instance:
e Direct: john.provider.com

DNS o Just add A records to DNS

o Beware: DNS cannot be changed instantly (failover is
slow)

 Indirect: login first and redirect to instance
o Requires server-side application logic/support
» Potential many-to-one: john.provider.com and
steve.provider.com -> same web/DB server

o Can be changed transparently to user and without
downtime

o Note: migration (planned) is easy, failover (unplanned) is
hard

21/26

Place a load balancer in front of servers, and direct clients

Routing to it.

Advantages:

DNS

e Transparent to users

 Instant failover (unlike DNS)

Load balancer

e You may need a reverse proxy anyway (for SSL, static
content routing)

» Typically good routing flexibility (reason for
existence!)

Disadvantages:
 Single point of failure

e Can interfere with application
o HTTP Host header, cookie, redirect rewriting

o Application state: need stateful routing?

« Another layer adds complexity and latency

22 [26

Routing
DNS

Load balancer

Application
logic

Application designed (or modified) to choose which
backend to use based on an algorithm.

» Lookup which database to use... in the database?
e Doesn't work for the user frontend!

e Could be based on username:
o john -> server j.sql.provider.com
o steve ->server s.sql.provider.com

o Or first 2 letters, etc.
« Using DNS for indirection makes migration easier

In some cases, only app logic is needed, e.g. store files in
Amazon S3 and let Amazon handle load balancing and HA.

23 /26

Routing, Monitoring and Failover

e Nagios monitors your web/DB/IMAP backend servers
 Failure detected -> run event handler (Nagios feature)

« Handler initiates failover:
o Change the DNS
o Reconfigure load balancers
o Rewrite application config files and restart
o Update database -> web application responds
o Start a VRRP IP failover/takeover

o New master may need reconfiguration (e.g. read-only slave -> read-write
master DB)

o Assume fail-hard: consistency check may be required

24 /26

Routing, Monitoring and Failover

Recovery handling

» Recovery detected -> run a different event handler
o What should it do?
o Fail back immediately?
o Reconfigure recovered instance as a slave?

o Recovery is often harder than failover!

25/26

