Exercice sur le routage statique

SI-F AfNOG 2018, Dakar

Etapes de l'exercice

- Configuration d'une adresse IP sur une interface d'un routeur
- Configuration de routes statiques
- Configuration d'une route par défaut
- Tests

- Le routage est effectué sur la base de l'adresse IP de destination
- Sans le routage, une interface réseau peut seulement atteindre les destinations avec qui il se trouve sur le même segment réseau.
- Un périphérique avec au moins 2 interfaces peut transférer des paquets d'une interface à une autre, ce processus est appelé souvent routage

Recherche de la route IP: La correspondance de route la plus

longue

- Le préfixe le plus spécifique/correspondance la plus longue gagne toujours!!
 - Beaucoup de gens oublient ce principe, même les ingénieurs chez les ISP qui ont une très grande expérience

Route statique

- Spécifie au routeur à qui remettre le paquet pour une destination donnée. Ceci sera privilégié et prioritaire par rapport à tout ce qui existe par rapport à cette destination.
- Route dynamique
 - Les routes sont apprises grâce aux protocoles de routage dynamique configurés sur le routeur
- Route par défaut
 - C'est la route qui est utilisée pour indiquer où acheminer le paquet pour les destinations qui ne sont pas explicitement spécifiées. C'est généralement le dernier recours qu'un routeur prendra

Route par défaut

- 0.0.0.0/0 pour v4
- 0:0:0:0:0:0:0/0 ou "::/0" pour v6
- Même algorithme que pour les autres routes la correspondance la plus longue gagne
- Toutes les adresses IP correspondent à ce préfixe. Cette route a toujours la correspondance la plus courte

Configuration de routage IP Exemple de route statique et défaut

ip route 172.16.1.0 255.255.255.0 172.16.2.1 # STATIC ip route 0.0.0.0 0.0.0.0 172.16.3.1 # DEFAULT

Routage statique

- Avantages
 - Simple à configurer et à maintenir
 - Securisé car seules les routes definies sont installées
 - Pas de consommation de bande passante par des updates de routage

Désadvantages

- Misa à jour manuelle des routes après changements
- Ajout explicite de routes pour tous les réseaux
- Rique d'erreurs de configuration
- Pas évolutif, pensez a des milliers de routes

Exercise Un: routage statique sous IPv4

Schéma du réseau pour ce lab: adressage IPv4

SCHEMA D'ADRESSAGE IPv4- MODULES 1 to 5

La Figure 1 ci-dessous montre le plan d'adressage utilisé pour les Modules 1 à 5. Le plan est expliqué dans les notes qui accompagnent les Modules.

Schéma du réseau pour ce lab: adressage IPv4

Adresses IPv4 - Modules 1 à 5

Router	Loopback	
R1	10.0.15.241	
R2	10.0.15.242	
R3	10.0.15.243	
R4	10.0.15.244	
R.5	10.0.15.245	_
R6	10.0.15.246	
R7	10.0.15.247	

Router	Loopback
R8	10.0.15.248
R9	10.0.15.249
R10	10.0.15.250
R11	10.0.15.251
R12	10.0.15.252
R13	10.0.15.253
R14	10.0.15.254

Table 1 - Adresses loopback IPv4 allouées aux routers des Modules 1 à 5

+		
	Router	Adresse,"Client"
1	R1	10.0.0.0/26
	R2	10.0.0.64/26
1	R3	10.0.0.128/26
	R4	10.0.0.192/26
1	R5	10.0.1.0/26
	R6	10.0.1.64/26
1	R7	10.0.1.128/26

Router	Adresse."Client"
R8	10.0.1.192/26
R9	10.0.2.0/26
R10	10.0.2.64/26
R11	10.0.2.128/26
R12	10.0.2.192/26
R13	10.0.3.0/26
R14	10.0.3.64/26

Table 2 - Adresses IPv4 "Clients" allouées aux routers des Modules 1 à 5

Formation des groupes

- Mettez vous par groupe de 2
- Notez les adresses IPv4 et IPv6 de sur vos interfaces
- Vous utiliserez des /30 sur tous les liens (point à point)

Comment vous connecter à votre routeur virtuel

telnet 196.200.216.250 327XX

- would you like to enter initial configuration? no
- enable
- configure terminal

Cisco Router Network Interface Configuration

 Configurer l'interface backbone sur le routeur cisco

conf t

interface fastethernet0/0

ip address n.n.n.n m.m.m.m

fastethernet0/0 est le nom de l'interface

n.n.n.n est l'adresse IP

m.m.m est le netmask

 Maintenant configurer l'interface locale sur votre routeur vers votre PC (cad eth0/0 ou Fa0/1). Utiliser l'IP attribuée par vous-même il y a 3 transparents.

Cisco Router Network Interface Configuration

- La configuration globale Cisco doit toujours inclure:
- ip classless
- ip subnet-zero
- ip cef
- La config d'interface en Cisco doit toujours inclure:
- no shutdown
- no ip proxy-arp
- no ip redirects
- no ip directed-broadcast

Comment vous connecter à votre PC?

telnet 196.200.216.250 327YY

Configurez une adresse IP sur le PC

ip 10.0.X.X/26 10.10.g.g

Test de Connectivité

- PC peut pinger l'interface local du routeur
- Routeur peut pinger le PC
- Routeur peut pinger les autres routeurs voisins
- PC ne peut pas pinger les autres routeurs ou les autres PCs
- Routeur ne peut pas pinger les autres PCs.

Les tables de Forwarding Tables à ce moment de l'exercice

Forwarding Tables à ce moment de l'exercise

Ajoutez les routes statiques des réseaux clients des autres routeurs

- Ip route X.X.X.X 255.255.255.192 v.v.v.v (voisin direct)
- Tous les PCs sont maintenant capables de joindre n'importe quel autre PC
- Tous les routeurs peuvent joindre tous les PC

Test de connectivité

- Tous les PCs sont maintenant capables de joindre n'importe quel autre PC
- Tous les routeurs peuvent joindre tous les PC

Lorsque vous pinger leur routeur...

Forwarding Tables en ce moment de l'exercise

Test de connectivité

- Tous les routeurs peuvent joindre tous les PCs
- Tous les PCs peuvent joindre les PCs des autres rangées
- Verifier avec traceroute

Lorsque vous pinger leur PC...

... et la réponse de leur PC

Indice!

 Si vous n'utilisez pas copier/coller ou la méthode TFTP pour uploader votre config, vous perdez beaucoup de temps!

Exercise Deux: routage statique sous IPv6

Schéma du réseau pour ce lab: adressage IPv6

Schéma du réseau pour ce lab: adressage IPv6

Adresses Loopback IPv6- Modules 1 à 5

1	Routeur	Adresse Loopback	Routeur	Adresse Loopback
Г	R1	2001:db8::1/128	R8	2001:db8::8/128
F	R2	2001:db8::2/128	R9	2001:db8::9/128
F	R3	2001:db8::3/128	R10	2001:db8::a/128
T	R4	2001:db8::4/128	R11	2001:db8::b/128
F	R5	2001:db8::5/128	R12	2001:db8::c/128
t	R6	2001:db8::6/128	R13	2001:db8::d/128
F	R7	2001:db8::7/128	R14	2001:db8::e/128

++++

Table 1 - Adresses Loopback IPv6 assignées à chaque. Modules 1 to 5

Adresses « clients » IPv6- Modules 1 à 5

1 m 1					
	Routeur	Adresse « client »	Routeur	Adresse « client »	
	R1	2001:db8:1::/48	R8	2001:db8:8::/48	
	R2	2001:db8:2::/48	R9	2001:db8:9::/48	
	R3	2001:db8:3::/48	R10	2001:db8:a::/48	1
	R4	2001:db8:4::/48	R11	2001:db8:b::/48	7
	R5	2001:db8:5::/48	R12	2001:db8:c::/48	
	R6	2001:db8:6::/48	R13	2001:db8:d::/48	T
	R7	2001:db8:7::/48	R14	2001:db8:e::/48	T
					_

Table 2 -Addresses des clients assignées à chaque routeur dans les Modules 1 to 5

Cisco Router Network Interface Configuration

Configurer l'interface backbone sur le router

conf t

```
ipv6 unicast-routing
```

interface fastethernet0/0

```
ipv6 address n:n:n:n/m
```

fastethernet0/0 est le nom de l'interface n:n:n:n est l'adresse IPv6 m est le netmask

 Maintenant configuere l'interface locale (sur le LAN) de votre router.

Cisco Router Network Interface Configuration

- La config global Cisco ipv6 doit toujours inclure:
- no ipv6 source-route
 - ipv6 cef
- La config d'une interface en Cisco doit aussi inclure:

no ipv6 redirects

Configurer des routes statiques pour les autres machines de la classe

 Sur votre routeur, ajouter des routes statiques vers tous les autres préfixes comme vous l'avez fait pour IPv4, utilisant l'adresse IP du backbone de leur routeur comme next-hop

```
ipv6 route n:n:n:n/m g:g:g:g
```

 Répéter plusieurs fois jusqu'a ce que toutes les routes soient ajoutées

Test de connectivité

- Tous les routeurs peuvent joindre tous les PCs
- Tous les PCs peuvent joindre toutes les adresses IP du backbone
- Tous les PCs peuvent joindre les PCs des autres rangées
- Tester avec traceroute

Exercice sur le routage statique

SI-F AfNOG 2018, Dakar