What are we using this Year?

- Mac-mini servers
- Intel core i7 quad core 8 hyperthreads
- 16GB of ram
- 2 x 256GB SATA SSD
- A pretty hefty server
- Less than $2k

Drawbacks
- One psu
- OOB is kind of a pain

Ubuntu / KVM
What is it?

• Virtualization of is the abstraction of the manifestation of a resource from the actual physical instance of that resource.

• What Computing/Network resources can be virtualized?
 • Virtually anything! :)

Anything?

- In the context of this course. We're interested in virtualization along two dimensions:
 - Services
 - Hosts
Resource/Service virtualization

- Examples:
 - Load-balancers
 - DNS Based GLB
 - HTTP(S) Virtual Hosting
 - MX records
 - Virtual Switches
 - Virtual Routers
 - Virtual Firewalls
Resource Virtualization - Continued

- HTTP virtual hosts
 - Multiple websites on one system
- Load Balancing
 - One (or many sites or applications) across many systems
 - Can be done at Layer-3/4/7
Host Virtualization

- Examples
 - VMware
 - Virtual-Box (used in class)
 - KVM
 - XEN
 - FreeBSD and Linux Jails
 - Windows Hyper-V
What problem are we attempting to solve with host virtualization.

- **Problem 1 – Idle capacity.**
 - Most of the machines in your datacenter are idle most of the time.
 - Capacity you're not using:
 - Cost money up front
 - Cost money to operate
 - Reduces your return on capital
 - Packing discreet systems into a smaller number of servers provides savings along virtually every dimension.
Problems - Continued

• Problem 2 – Provisioning
 • Spinning up a new service involves:
 – Acquiring the hardware
 – Building the server
 – Integration with existing services
 • With virtualization we're aiming to short-circuit that
 – Capacity is a resource
 – Machine instances may be cloned or provisioned from common basic images
 – Resources are purchased in bulk and assigned to applications as necessary.
Problems - Continued

- Problem 3 – Hardware abstraction
 - Operating systems, servers, and applications evolve at different rates.
 - Providing a common set of infrastructure resources means, virtualized systems are portable across servers.
 - Hardware failure can more easily be managed.
- Abstraction may come at a performance cost however. (some workloads are more expensive than others)
 - See:
Examples – Desktop Virtualization
Desktop Virtualization

- **Uses**
 - Prototyping services or applications before deployment
 - Utilities that don't run on your operating system
 - Isolation of sandbox environments from your desktop
 - Maintaining multiple versions of an environment for support purposes.
 - Staying familiar with unix while running windows (consider compared to the alternative (dual-booting))

- **Issues**
 - Emulating multiple computers on your laptop/desktop is somewhat resource intensive

- **Vmware player and VirtualBox are free.**
 - https://my.vmware.com/web/vmware/downloads
Examples – Server Virtualization
Server Virtualization - Continued
Server Virtualization
Virtualized Servers as a Service (Amazon Web Services)

• Much as collocated servers, are available from a hosting provider, virtual servers are also available.

• Model is:
 • You pay for what you use.
 • Flexibility, need fewer servers today then you used, yesterday.
 • Leverage other amazon tools (storage/map-reduce/load-balancing/payments etc)
AWS
AWS Steps

- Select availability zone
- Launch new instance
- Select appropriate ami
- Associate with ssh key
- Launch instance
- Add ip
- SSH into new machine instance.
- t1-micro-instances run $54 a year + bandwidth
Try it for free...

- Free tier for the first Calendar year is (per month):
 - 750 hours of EC2 running Linux/Unix Micro instance usage
 - 750 hours of Elastic Load Balancing plus 15 GB data processing
 - 10 GB of Amazon Elastic Block Storage (EBS) plus 1 million IOs, 1 GB snapshot storage, 10,000 snapshot Get Requests and 1,000 snapshot Put Requests
 - 15 GB of bandwidth in and 15 GB of bandwidth out aggregated across all AWS services
- Which is not to say that, at scale EC2 is particularly cheap, (It isn't)
 - Limited capital at risk is in the context of prototyping or experimentation however.
AWS - Continued

• For provisioning purposes cli interaction is possible:
 • http://aws.amazon.com/developertools/351

• Along with tools to support the provisioning and destruction of virtual machines.
Provisioning and management

- Is the glue that makes virtualization usable
- In commercial virtualization environments the provisioning/management toolkits represent the bulk of the licensing cost (VMware) and the secret sauce (VMotion, disaster recovery, backup, etc)

Examples:

- XEN tools – a collection of perl scripts for spinning VMs
- Rightscale – (orchestration multiple public/private clouds)
 http://www.rightscale.com
- Puppet (host / configuration management) -
Variation In virtualized environments

- Enterprise and Government virtualized environments may tend towards heterogeneity.
 - e.g. the applications (servers) that are being virtualized have accumulated over time
 - Are different enough that management may be depressingly manual
- ASP/Internet services environments may be more homogenous.
 - Leverage a common set infrastructure primitives
 - Thousands of like-systems providing overlapping functionality across hundreds of servers
 - Traditional network elements (e.g. loadbalancers/firewalls) may be virtualized along with the application.
Can you spot the...

- Web-node?
- Database-node?
- Load-balancer?
- Nameserver?
- DHCP Server?
- Email cluster?
- Devnodes?
Complimentary technologies

- NIC teaming or Link aggregation
- Network attached storage and network centric filesystems
 - NFS
 - Hadoopfs
 - GFS2
- Distributed databases
 - Example mysql cluster
 - Couchbase/Membase
 - OracleRAC