The IPv6 Protocol & IPv6 Standards

ISP Workshops

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Last updated 22nd October 2018

Acknowledgements

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene
- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place
- Bug fixes and improvements are welcomed
 - Please email workshop (at) bgp4all.com

Philip Smith

IPv6

December 1995

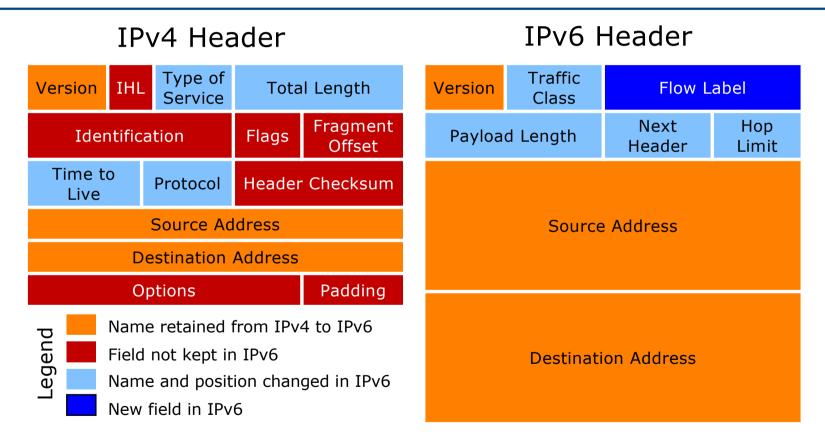
First Specification published as Proposed Standard in RFC1883

December 1998

- Updated Specification published as Draft Standard in RFC2460
- Virtually all implementations today adhere to RFC2460
- □ July 2017
 - RFC8200 declares IPv6 as Internet Standard, replacing RFC2460

So what has really changed?

IPv6 does not interoperate with IPv4

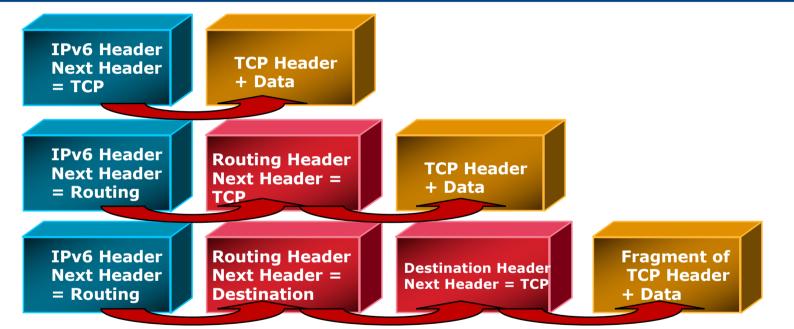

- Separate protocol working independently of IPv4
- Deliberate design intention
- Expanded address space
 - Address length quadrupled to 16 bytes
- Simplified header to remove unused or unnecessary fields
 - Fixed length headers to "make it easier for chip designers and software engineers"

What else has changed?

Header Format Simplification

- Fixed length, optional headers are daisy-chained
- IPv6 header is twice as long (40 bytes) as IPv4 header without options (20 bytes)
- No checksum at the IP network layer
- No hop-by-hop fragmentation
 - Path MTU discovery
- 64 bits aligned
- Authentication and Privacy Capabilities
 - IPsec is integrated
- No more broadcast

IPv4 and IPv6 Header Comparison


IPv6 Header

- Version = 4-bit value set to 6
- Traffic Class = 8-bit value
 - Replaces IPv4 TOS field
- □ Flow Label = 20-bit value
- Payload Length = 16-bit value
 - The size of the rest of the IPv6 packet following the header replaces IPv4 Total Length
- Next Header = 8-bit value
 - Replaces IPv4 Protocol, and indicates type of next header
- Hop Limit = 8-bit value
 - Decreased by one every IPv6 hop (IPv4 TTL counter)
- Source address = 128-bit value
- Destination address = 128-bit value

Header Format Simplification

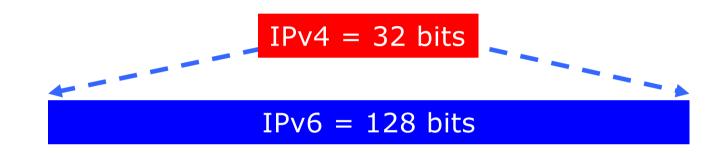
- Fixed length
 - Optional headers are daisy-chained
- □ 64 bits aligned
- IPv6 header is twice as long (40 bytes) as IPv4 header without options (20 bytes)
- IPv4 contains 10 basic header fields
- IPv6 contains 6 basic header fields
 - No checksum at the IP network layer
 - No hop-by-hop fragmentation

Header Format – Extension Headers

- All optional fields go into extension headers
- These are daisy chained behind the main header
 - The last 'extension' header is usually the ICMP, TCP or UDP header
- Makes it simple to add new features in IPv6 protocol without major re-engineering of devices
- Number of extension headers is not fixed / limited

Header Format – Common Headers

Common values of Next Header field:


- 0 Hop-by-hop option (extension)
- 6 TCP (payload)
- 17 UDP (payload)
- 43 Source routing (extension)
- 44 Fragmentation (extension)
- 50 Encrypted security payload (extension, IPSec)
- 51 Authentication (extension, IPSec)
- 58 ICMP for IPv6 (payload)
- 59 Null (No next header)
- 60 Destination option (extension)

Header Format – Ordering of Headers

Order is important because:

- Hop-by-hop header has to be processed by every intermediate node
- Routing header needs to be processed by intermediate routers
- At the destination, fragmentation has to be processed before other headers
- This makes header processing easier to implement in hardware

Larger Address Space

IPv4

32 bits

= 4,294,967,296 possible addressable devices

□ IPv6

128 bits: 4 times the size in bits

- = 3.4×10^{38} possible addressable devices
- = 340,282,366,920,938,463,463,374,607,431,768,211,456
- = 4.5×10^{28} addresses per person on the planet

How was the IPv6 Address Size Chosen?

□ Some wanted fixed-length, 64-bit addresses

- Easily good for 10¹² sites, 10¹⁵ nodes, at .0001 allocation efficiency
 (3 orders of magnitude more than IPv6 requirement)
- Minimizes growth of per-packet header overhead
- Efficient for software processing
- Some wanted variable-length, up to 160 bits
 - Compatible with OSI NSAP addressing plans
 - Big enough for auto-configuration using IEEE 802 addresses
 - Could start with addresses shorter than 64 bits & grow later
- □ Settled on fixed-length, 128-bit addresses

IPv6 Address Representation (1)

- 16 bit fields in case insensitive colon hexadecimal representation
 - 2031:0000:130F:0000:0000:09C0:876A:130B
- Leading zeros in a field are optional:
 - 2031:0:130F:0:0:9C0:876A:130B
- Successive fields of 0 represented as ::, but only once in an address:
 - is ok 2031:0:130F::9C0:876A:130B 2031::130F::9C0:876A:130B is **NOT** ok
 - $0:0:0:0:0:0:0:1 \rightarrow ::1$ (loopback address)
 - $0:0:0:0:0:0:0:0 \rightarrow ::$
- (unspecified address)

IPv6 Address Representation (2)

I: positioning recommendations – RFC5952

- The largest set of :0: be replaced with :: for consistency
 2001:DB8:0:2F:0:0:0:5 becomes 2001:DB8:0:2F::5 rather than 2001:DB8::2F:0:0:0:5
- The first set of :0: be replaced with :: in the case there are two sets of :0:
 2001:db8:0:0:1:0:0:1 becomes 2001:db8::1:0:0:1 instead of 2001:db8:0:0:1::1
- IPv4-compatible (not used any more)
 - 0:0:0:0:0:0:192.168.30.1
 - **=** ::192.168.30.1
 - = ::COA8:1E01

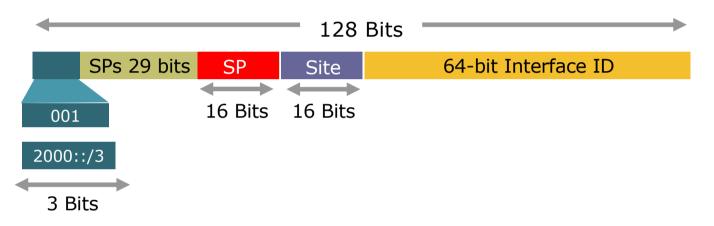
□ In a URL, it is enclosed in brackets (RFC3986)

- http://[2001:DB8:4F3A::206:AE14]:8080/index.html
- Cumbersome for users, mostly for diagnostic purposes
- Use fully qualified domain names (FQDN)
- \Rightarrow The DNS has to work!!

IPv6 Address Representation (3)

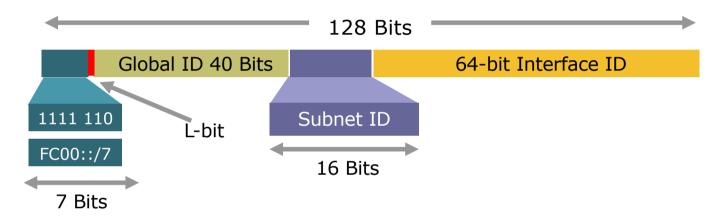
Prefix Representation

- Representation of prefix is just like IPv4 CIDR
- The prefix length (subnet size) appears after the "/"
- IPv4 address: 198.10.0.0/16
- IPv6 address:
 - **2001:DB8:1200::/40**


IPv6 Addressing

- IPv6 Addressing rules are covered by multiple RFCs
 - Architecture defined by RFC4291
- Address Types are :
 - Unicast : One to One (Global, Unique Local, Link local)
 - Anycast : One to Nearest (Allocated from Unicast)
 - Multicast : One to Many
- A single interface may be assigned multiple IPv6 addresses of any type (unicast, anycast, multicast)
 - \blacksquare No Broadcast Address \rightarrow Use Multicast

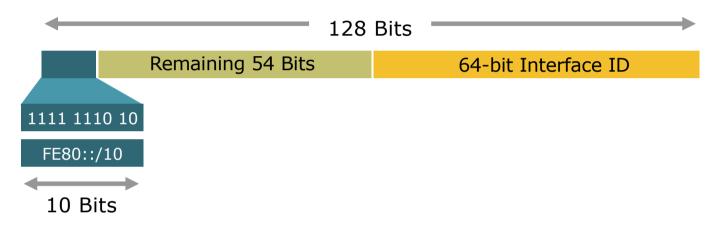
IPv6 Addressing


Туре	Binary	Hex
Unspecified	0000	::/128
Loopback	0001	::1/128
Global Unicast Address	0010	2000::/3
Unique Local Unicast Address	1111 1100 1111 1101	FC00::/7
Link Local Unicast Address	1111 1110 10	FE80::/10
Multicast Address	1111 1111	FF00::/8

Global Unicast Addresses

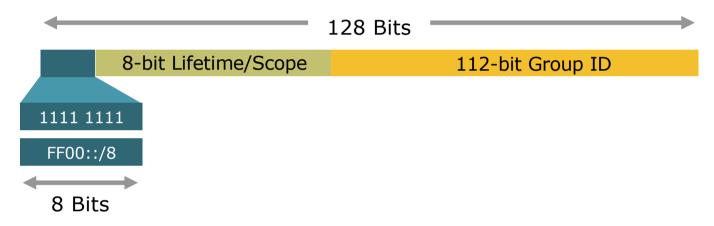
- Address block delegated by IETF to IANA
- For distribution to the RIRs and on to the users of the public Internet
- Global Unicast Address block is 2000::/3
 - This is 1/8th of the entire available IPv6 address space

Unique-Local Addresses

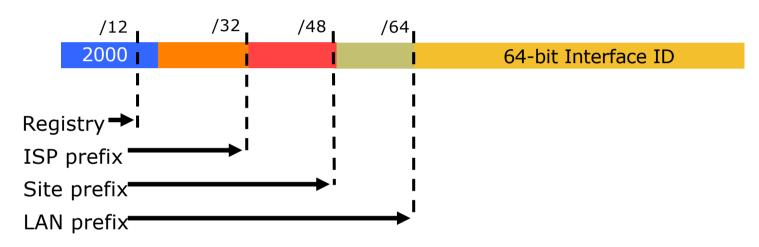

- Unique-Local Addresses (ULAs) are NOT routable on the Internet
 - L-bit set to 1 which means the address is locally assigned
- ULAs are used for:
 - Isolated networks
 - Local communications & inter-site VPNs
 - (see https://datatracker.ietf.org/doc/draft-ietf-v6ops-ula-usage-considerations/ now expired)

Unique-Local – Typical Scenarios

Isolated IPv6 networks:


- Never need public Internet connectivity
- Don't need assignment from RIR or ISP
- Local devices such as printers, telephones, etc
 - Connected to networks using Public Internet
 - But the devices themselves do not communicate outside the local network
- Site Network Management systems connectivity
- Infrastructure addressing
 - Using dual Global and Unique-Local addressing
- Public networks experimenting with NPTv6 (RFC6296)
 - One to one IPv6 to IPv6 address mapping

Link-Local Addresses


- Link-Local Addresses Used For:
 - Communication between two IPv6 device (like ARP but at Layer 3)
 - Next-Hop calculation in Routing Protocols
- Automatically assigned by Router as soon as IPv6 is enabled
 - Mandatory Address
- Only Link Specific scope
- Remaining 54 bits could be Zero or any manual configured value

Multicast Addresses

- Multicast Addresses Used For:
 - One to many communication
- 2nd octet reserved for Lifetime and Scope
- Remainder of address represents the Group ID
- (Substantially larger range than for IPv4 which only had 224.0.0.0/4 for Multicast)

Global Unicast IPv6 Address Allocation

- The allocation process is:
 - The IANA is allocating out of 2000::/3 for initial IPv6 unicast use
 - Each registry gets a /12 prefix from the IANA
 - Registry allocates a /32 prefix (or larger) to an IPv6 ISP
 - Policy is that an ISP allocates a /48 prefix to each end customer

IPv6 Addressing Scope

□ 64 bits reserved for the interface ID

- Possibility of 2⁶⁴ hosts on one network LAN
- In theory 18,446,744,073,709,551,616 hosts
- Arrangement to accommodate MAC addresses within the IPv6 address

■ 16 bits reserved for the end site

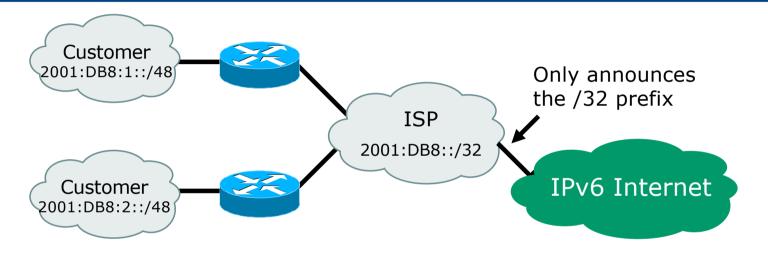
- Possibility of 2¹⁶ networks at each end-site
- 65536 subnets equivalent to a /12 in IPv4 (assuming a /28 or 16 hosts per IPv4 subnet)

IPv6 Addressing Scope

■ 16 bits reserved for each service provider

- Possibility of 2¹⁶ end-sites per service provider
- 65536 possible customers: equivalent to each service provider receiving a /8 in IPv4 (assuming a /24 address block per customer)

29 bits reserved for all service providers

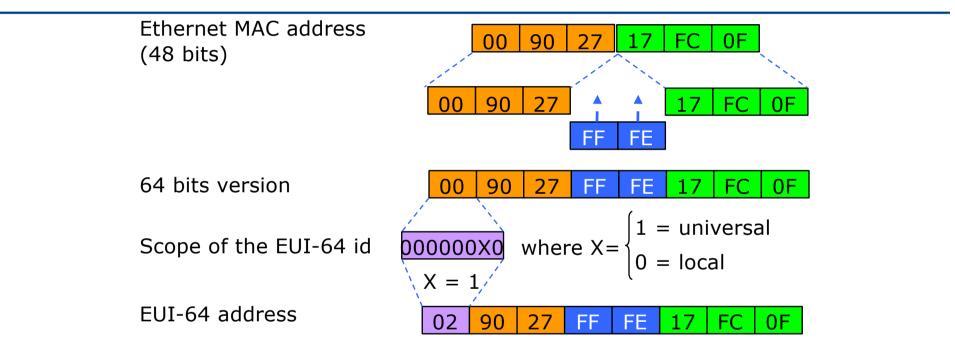

- Possibility of 2²⁹ service providers
- i.e. 536,870,912 discrete service provider networks
 Although some service providers already are justifying more than a /32

How to get an IPv6 Address?

IPv6 address space is allocated by the 5 RIRs:

- AfriNIC, APNIC, ARIN, LACNIC, RIPE NCC
- Network Operators get address space from the RIRs
- End Users get IPv6 address space from their ISP
- In the past, there were also:
 - 6to4 tunnels using 2002::/16
 - Intended to give isolated IPv6 nodes access to the IPv6 Internet
 - Obsoleted in May 2015 (BCP196) because it was very unreliable and totally insecure
 - 6Bone using 3FFE::/16
 - The experimental IPv6 network launched in the mid 1990s
 - Was retired on 6th June 2006 (RFC3701)

Aggregation hopes

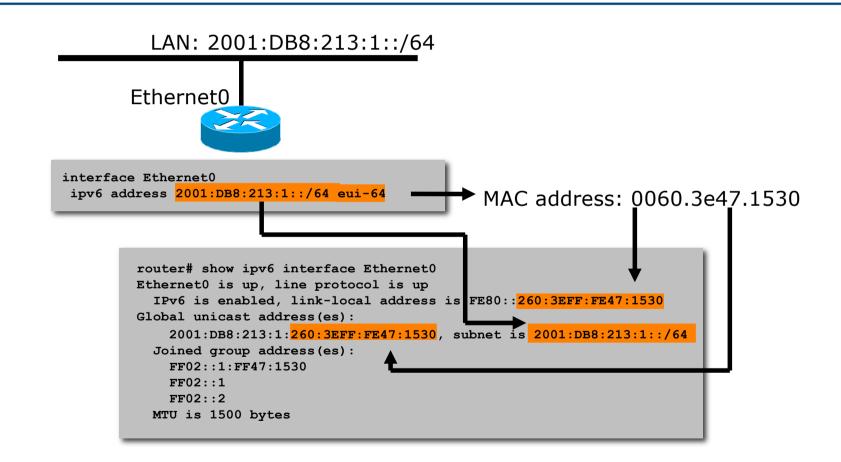


- Larger address space enables aggregation of prefixes announced in the global routing table
- Idea was to allow efficient and scalable routing
- But current Internet multihoming solution breaks this model

Interface IDs

- Lowest order 64-bit field of unicast address may be assigned in several different ways:
 - Auto-configured from a 64-bit EUI-64, or expanded from a 48bit MAC address (e.g., Ethernet address)
 - Auto-generated pseudo-random number (to address privacy concerns)
 - Assigned via DHCP
 - Manually configured

EUI-64


- EUI-64 address is formed by inserting FFFE between the company-id and the manufacturer extension, and setting the "u" bit to indicate scope
 - Global scope: for IEEE 48-bit MAC
 - Local scope: when no IEEE 48-bit MAC is available (eg serials, tunnels)

EUI-64

Device MAC address is used to create:

- Final 64 bits of global unicast address e.g.
 2001:DB8:0:1:290:27FF:FE17:FC0F
- Final 64 bits of link local address e.g.
 FE80::290:27FF:FE17:FC0F
- Final 24 bits of solicited node multicast address e.g.
 FF02::1:FF17:FC0F
- Note that both global unicast and link local addresses can also be configured manually

IPv6 Addressing Examples

IPv6 Address Privacy (RFC4941)

- Temporary addresses for IPv6 host client application, e.g. Web browser
- Intended to inhibit device/user tracking but is also a potential issue
 - More difficult to scan all IP addresses on a subnet
 - But port scan is identical when an address is known
- Random 64-bit interface ID, run DAD before using it
- Rate of change based on local policy
- Implemented on Microsoft Windows Vista onwards and on Apple MacOS 10.7 onwards
 - Can be activated on FreeBSD/Linux with a system call

Host IPv6 Addressing Options

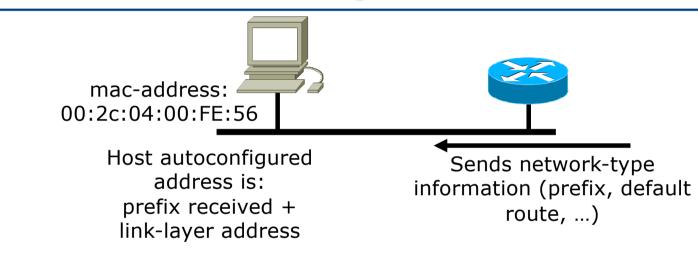
Stateless (RFC4862)

SLAAC – Stateless Address AutoConfiguration

Stateful

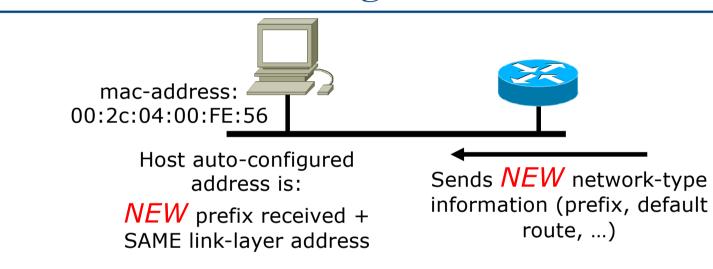
- DHCPv6 required by most enterprises
- DHCPv6-PD new: Prefix Delegation
 Allows Network Operators to distribute subnets to End-sites
- Manual like IPv4 before DHCP was developed
 Useful for servers and router infrastructure
 Does not scale for typical end user devices

IPv6 Renumbering


Renumbering Hosts

- Stateless:
 - Hosts renumbering is done by modifying the RA to announce the old prefix with a short lifetime and the new prefix
- Stateful:
 - DHCPv6 uses same process as DHCPv4

Renumbering Routers


- Router renumbering protocol was developed (RFC2894) to allow domain-interior routers to learn of prefix introduction / withdrawal
- No known implementation!

Stateless Auto-configuration

- Device auto-configures link-local address
- Device sends router solicitation (RS) message
- Router responds with router advertisement (RA)
 - This includes prefix and default route
 - RFC8106 adds DNS server option
- Device configures its IPv6 address by concatenating prefix received with its EUI-64 address

Stateless Auto-configuration: Renumbering

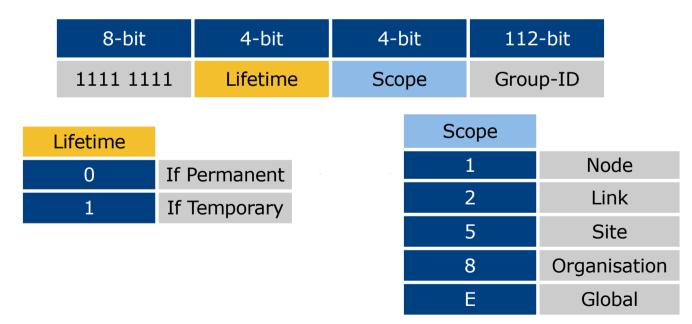
- Router sends router advertisement (RA)
 - This includes the new prefix and default route (and remaining lifetime of the old address)
- Device configures a new IPv6 address by concatenating prefix received with its EUI-64 address
 - Retains old address but attaches lifetime to it

Multicast use

Broadcasts in IPv4

- Interrupts all devices on the LAN even if the intent of the request was for a subset
- Can completely swamp the network ("broadcast storm")

Broadcasts in IPv6

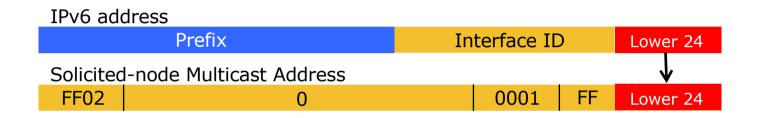

Are not used and replaced by multicast

Multicast

- Enables the efficient use of the network
- Multicast address range is much larger

IPv6 Multicast Address

- □ IP multicast address has a prefix FF00::/8
- The second octet defines the lifetime and scope of the multicast address.

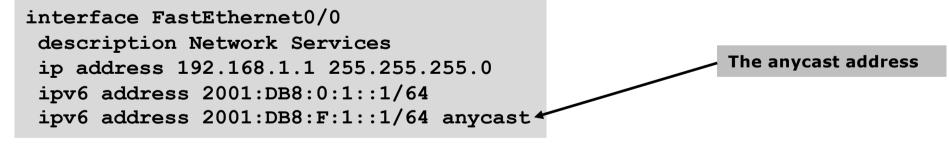

IPv6 Multicast Address Examples

- RIPng
 - The multicast address AllRIPRouters is FF02::9
 Note that 02 means that this is a permanent address and has link scope
- OSPFv3
 - The multicast address AllSPFRouters is FF02::5
 - The multicast address AllDRouters is FF02::6
- EIGRP
 - The multicast address AllEIGRPRouters is FF02::A

Solicited-Node Multicast

- Solicited-Node Multicast is used for Duplicate Address Detection
 - Part of the Neighbour Discovery process
 - Replaces ARP
 - Duplicate IPv6 Addresses are rare, but still have to be tested for
- For each unicast and anycast address configured there is a corresponding solicited-node multicast address
 - This address is only significant for the local link

Solicited-Node Multicast


Solicited-node multicast address consists of FF02:0:0:0:0:1:FF::/104 prefix joined with the lower 24 bits from the unicast or anycast IPv6 address

Solicited-Node Multicast

```
R1#sh ipv6 int e0
Ethernet0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::200:CFF:FE3A:8B18
 No global unicast address is configured
  Joined group address(es):
    FF02::1
    FF02::2
                                     Solicited-Node Multicast Address
    FF02::1:FF3A:8B18
 MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
 ND advertised reachable time is 0 milliseconds
  ND advertised retransmit interval is 0 milliseconds
 ND router advertisements are sent every 200 seconds
  ND router advertisements live for 1800 seconds
 Hosts use stateless autoconfig for addresses.
R1#
```

IPv6 Anycast

- An IPv6 anycast address is an identifier for a set of interfaces (typically belonging to different devices/nodes)
 - A packet sent to an anycast address is delivered to one of the interfaces identified by that address (the "nearest" one, according to the routing protocol's measure of distance).
 - Anycast addresses are allocated from the Global Unicast Address pool
 - The device interface must be configured to indicate if the address is anycast

RFC4291 describes IPv6 Anycast in more detail

Anycast on the Internet

- In reality there is no known implementation of IPv6 Anycast as per the RFC
 - Most operators have chosen to use IPv4 style anycast instead
 Described in RFC4786 / BCP126
- Anycast usage today:
 - A global address is assigned to all nodes which need to respond to a service being offered
 - This address is routed as part of its parent address block
 - The responding node is the one which is closest to the requesting node according to the routing protocol
 - Each anycast node looks identical to the other
 - Applicable within an ASN, or globally across the Internet

Anycast on the Internet

Typical examples today include:

Global DNS resolvers

Google	8.8.8.8	2001:4860:4860::8888
Google	8.8.4.4	2001:4860:4860::8844
Quad9	9.9.9.9	2620:FE::FE

Root DNS and ccTLD/gTLD nameservers

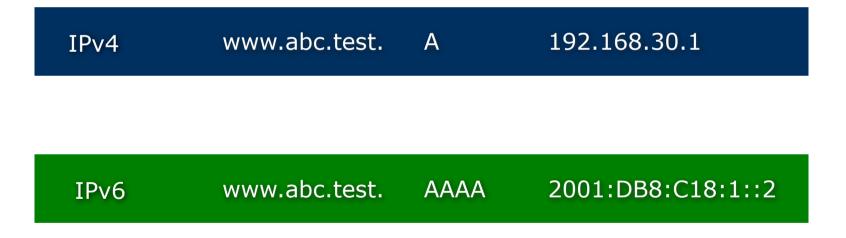
F-root	192.5.5.241	2001:500:2F::F
I-root	192.36.148.17	2001:7fe::53
□.com	192.5.6.30	2001:503:a83e::2:30
□.se	194.146.106.22	2001:67c:1010:5::53

SMTP relays and DNS resolvers within ISP autonomous systems

MTU Issues

- Minimum link MTU for IPv6 is 1280 octets (versus 68 octets for IPv4)
 - \Rightarrow on links with MTU < 1280, link-specific fragmentation and reassembly must be used
- Implementations are expected to perform path MTU discovery to send packets bigger than 1280
- Minimal implementation can omit PMTU discovery as long as all packets kept ≤ 1280 octets
- A Hop-by-Hop Option supports transmission of "jumbograms" with up to 2³² octets of payload

IPv6 Neighbour Discovery


- Protocol defines mechanisms for the following problems:
 - Router discovery
 - Prefix discovery
 - Parameter discovery
 - Address autoconfiguration
 - Address resolution
 - Next-hop determination
 - Neighbour unreachability detection
 - Duplicate address detection
 - Redirects

IPv6 Neighbour Discovery

- Defined in RFC4861
- Protocol built on top of ICMPv6 (RFC 4443)
 - Combination of IPv4 protocols (ARP, ICMP, IGMP,...)
- Fully dynamic, interactive between Hosts & Routers
- Defines 5 ICMPv6 packet types:
 - Router Solicitation
 - Router Advertisement
 - Neighbour Solicitation
 - Neighbour Advertisement
 - Redirect

IPv6 and DNS

■ Hostname to IP address:

Example Forward Zone File

<pre>@ IN SOA ns.example NS</pre>		.example. (2018040300 3600 1800 604800 86400) ample.
;;; Servers		
www	A	192.168.1.1
	AAAA	2001:DB8:1::1
ns	A	192.168.1.2 entry once the service
	AAAA	2001:DB8:1::2 has been configured
mail	A	192.168.1.3 to respond to IPv6
	AAAA	2001:DB8:1::3
;;; Routers		
cr.city1	A	192.168.0.1
	AAAA	2001:DB8::1
cr.city2	A	192.168.0.2
	AAAA	2001:DB8::2
cr.city3	A	192.168.0.3
	AAAA	2001:DB8::3
;;; P2P Links		
xe-2-0-0.cr.city1	A	192.168.0.33
	AAAA	2001:DB8:0:1::0
xe-2-1-0.cr.city2	A	192.168.0.34
	AAAA	2001:DB8:0:1::1
xe-1-2-0.cr.city2	A	192.168.0.37
	AAAA	2001:DB8:0:2::0
xe-2-1-0.cr.city3	A	192.168.0.38 51
	AAAA	2001:DB8:0:2::1

IPv6 and DNS

IP address to Hostname:

IPv4 1.30.168.192.in-addr.arpa. PTR www.abc.test.

IPv6 2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.8.1.C.0.8.B.D.0.1.0.0.2.ip6.arpa PTR www.abc.test.

Example IPv6 Reverse Zone File

```
SOA ns.example.
              admin.example.
                       (2018040300 3600 1800 604800 86400)
@ IN
    NS
         ns1.example.
;;; Servers
1
    PTR
         www.example.
2
        ns.example.
    PTR
        mail.example.
3
    PTR
;;; Routers
cr.city1.example.
1
    PTR
        cr.city2.example.
2
    PTR
3
    PTR
        cr.city3.example.
;;; P2P Links
0
        xe-2-0-0.cr.city1.example.
    PTR
        xe-2-1-0.cr.city2.example.
1
    PTR
xe-2-0-0.cr.city2.example.
0
    PTR
1
        xe-2-1-0.cr.city3.example.
    PTR
```

Example BIND9 configuration

And to join the previous examples together, this might be what the configuration for BIND looks like:

Critical point:

 Never create any DNS entry unless the device is able to provide the claimed service

```
zone "example" IN {
        type master;
        file "zones/db.example.master";
      };
zone "8.b.d.0.1.0.0.2.ip6.arpa" IN {
        type master;
        file "zones/db.2001.db8.master";
     };
zone "0.168.192.in-addr.arpa" IN {
        type master;
        file "zones/db.0.168.192.master";
      };
zone "1.168.192.in-addr.arpa" IN {
        type master;
        file "zones/db.1.168.192.master";
     };
```

IPv6 Technology Scope

IP Service	IPv4 Solution	IPv6 Solution
Addressing Range	32-bit, Network Address Translation	128-bit, Multiple Scopes
Autoconfiguration	DHCP	DHCP, Serverless, Reconfiguration
Security	IPsec	IPsec works End-to-End
Quality of Service	Differentiated Service, Integrated Service	Differentiated Service, Integrated Service
Multicast	IGMP, PIM, Multicast BGP	MLD, PIM, Multicast BGP, Scope Identifier

What does IPv6 do for:

Security

- Everything that IPv4 already supports
- IPSec runs on both
- QoS
 - Everything that IPv4 already supports
 - Differentiated and Integrated Services run on both
 - So far, the new Flow label has not been used

IPv6 Security

- IPSec standards apply to both IPv4 and IPv6
- All implementations required to support authentication and encryption headers ("IPSec")
- Authentication is separate from encryption for use in situations where encryption is prohibited or prohibitively expensive
 - AH = Authentication Header
 - ESP = Encrypted Security Payload
- Key distribution protocols are not yet defined (independent of IP v4/v6)
- Support for manual key configuration required

IP Quality of Service Reminder

Two basic approaches developed by IETF:

- "Integrated Service" (int-serv)
 - Fine-grain (per-flow), quantitative promises (e.g., x bits per second), uses RSVP signalling
- "Differentiated Service" (diff-serv)
 - Coarse-grain (per-class), qualitative promises (e.g., higher priority), no explicit signalling
- Signalled diff-serv (RFC2998)
 - Uses RSVP for signalling with course-grained qualitative aggregate markings
 - Allows for policy control without requiring per-router state overhead

IPv6 Support for Int-Serv

- 20-bit Flow Label field to identify specific flows needing special QoS
 - Each source chooses its own Flow Label values; routers use Source Addr + Flow Label to identify distinct flows
 - Flow Label value of 0 used when no special QoS requested (the common case today)

Originally standardised as RFC3697

IPv6 Flow Label

Flow label has not been used since IPv6 standardised

 Suggestions for use in recent years were incompatible with original specification (discussed in RFC6436)

Specification updated in RFC6437

 RFC6438 describes the use of the Flow Label for equal cost multi-path and link aggregation in Tunnels

IPv6 Support for Diff-Serv

- 8-bit Traffic Class field to identify specific classes of packets needing special QoS
 - Same as new definition of IPv4 Type-of-Service byte
 - May be initialized by source or by router enroute; may be rewritten by routers enroute
 - Traffic Class value of 0 used when no special QoS requested (the common case today)

IPv6 Status – Standardisation

- Core IPv6 Specifications are IETF Standards
 - Well tested & stable
 - Years of deployment experience
- □ 3GPP UMTS Rel 5 cellular wireless standards (2002) mandated IPv6
- Several key components on standards track...

Specification (STD86) ICMPv6 (STD89) RIP (RFC2080) IGMPv6 (RFC2710) Router Alert (RFC2711) Autoconfiguration (RFC4862) DHCPv6 (RFC3315 & 4361) IPv6 Mobility (RFC6275) GRE Tunnelling (RFC2473) DAD for IPv6 (RFC4429) ISIS for IPv6 (RFC5308) Neighbour Discovery (RFC4861) IPv6 Addresses (RFC4291 & 3587) BGP (RFC2545) OSPF (RFC5340) Jumbograms (RFC2675) Radius (RFC3162) Flow Label (RFC6436/7/8) Mobile IPv6 MIB (RFC4295) Unique Local IPv6 Addresses (RFC4193) Teredo (RFC4380) VRRP (RFC5798)

IPv6 Status – Standardisation

 IPv6 available over: PPP (RFC5072) FDDI (RFC2467) NBMA (RFC2491) Frame Relay (RFC2590) IEEE1394 (RFC3146) Facebook (RFC5514)

> LoWPAN (RFC8138) Cellular Networks (RFC6459)

Ethernet (RFC2464) Token Ring (RFC2470) ATM (RFC2492) ARCnet (RFC2497) FibreChannel (RFC4338) MS/TP (RFC8163) DECT ULE (RFC8105)

Recent IPv6 Hot Topics

- IPv6 on Mobile Networks
 - "The end of NAT" and "NAT offload"
- IPv4 depletion debate
 - IANA IPv4 pool ran out on 3rd February 2011
 http://www.potaroo.net/tools/ipv4/
- IPv6 Transition "assistance"
 - GGNAT, 6rd, NAT64, DS-Lite, 464XLAT...
- IPv6 Security
 - Security industry & experts taking much closer look
- Multihoming
 - Multihoming in IPv6 is the same as in IPv4

Conclusion

- Protocol is "ready to go"
- The core components have already seen more than 20 years global operational experience

The IPv6 Protocol & IPv6 Standards

ISP Workshops