Internet Routing Registry Tutorial

Prerequisites

- You should have some idea of how Internet peering and transit works
- You should have conceptual BGP skills
- You should know how to manipulate objects in a WHOIS database

The IRR

- Concept of "the" Internet Routing Registry system established in 1995
- Web site at <u>http://www.irr.net</u>
- Initially RIPE-(1)81 format, shifted to RPSL
- Mirror routing registry data in a common repository for simplified queries - "the union of world-wide routing policy databases"

The IRR

- Today, consists of about 40 registries operated by
 - RIRs (AfriNIC / RIPE)
 - ISPs (NTT / CenturyLink, C&W)
 - Non-affiliated public registries (RADB / ALTDB)

The RADB

- Routing Arbiter DataBase (managed by Merit)
- One of the earliest routing registry databases

Why use an IRR?

- Document routing policy
- Register route objects to associate network prefixes with origin AS
- Solves the problem of: What prefixes should my peer / customer be announcing to me?

Why use an IRR?

- A number of transit providers require their customers to register routes and filter customer route announcements based on registry contents.
- Filters prevent unauthorised announcements; protects against route hijacking, denial of service, etc

Querying the IRR

- Historically, IRRs have the "WHOIS" protocol (TCP 43)
- Two primary IRR server implementations
 - RIPE DB from RIPE NCC
 - IRRd server from Merit
- Some IRRs offer Web/REST based queries
- Possible to run your own IRRd.

RPSL specifics

- Each object type (class) contains mandatory and optional attributes
- All objects must have these attributes:
 - mnt-by: identifies mntner object that controls the objects
 - changed: lists email and time of change
 - source: identifies the registry name where the object is located

Using the IRR

- You need an AS number to use a registry (Ask your RIR)
- You need a mntner object (ie. be safe)
- You need an autnum object (ie. have an ASN)
- You need route object(s)

mntner object

- mntner is an abbreviation of maintainer
- identifies accounts in the registry
- specifies authentication mechanism in the "auth" attribute. Either:
 - PGP-KEY PGP/GPG based auth
 - (B)CRYPT-PW / MD5-PW password auth
 - MAIL-FROM email based auth

mntner object

- mntner is an abbreviation of maintainer
- identifies accounts in the registry
- specifies authentication mechanism in the "auth" attribute. Either:
 - PGP-KEY PGP/GPG based auth
 - BCRYPT-PW
 - CRYPT-PW / MD5-PW passion auth
 MAL-FLOIT email based auth

Sample mntner object

mntner: descr: org: admin-c: tech-c: upd-to: mnt-nfy: auth: remarks: notify: abuse-mailbox: mnt-by: changed: source:

[mandatory] [optional] [multiple] [mandatory] [multiple] [optional] [mandatory] [multiple] [optional] [mandatory] [optional] [optional] [optional] [mandatory] [multiple] [mandatory] [multiple] [mandatory] [single]

[mandatory] [single] [multiple] [multiple] [multiple] [multiple] [multiple] [multiple] [multiple]

[primary/look-up key] []

[inverse key] [inverse key] [inverse key] [inverse key] [inverse key] [inverse key] [] [inverse key] [inverse key] [inverse key] [] 1 1

aut-num object

- Defines routing policy for an AS
- Uses import: and export: attributes to specify policy
- Can be used for highly detailed policy descriptions and automated config generation
- Can reference other registry objects such as assets, route-sets, and filter-sets

Sample aut-num object

- aut-num: AS42
- as-name: UNSPECIFIED
- descr: Packet Clearing House www.pch.net
- admin-c: Bill Woodcock
- tech-c: Bill Woodcock
- export: to AS-ANY announce AS-PCH
- remarks: peering@pch.net, +1 866 BGP PEER
- notify: radb@pch.net
- mnt-by: MAINT-AS3856
- changed: scg@pch.net 20041121
- source: RADB

Alternate aut-num uses

 Often used to register BGP community support offered by service providers

Example: whois -h whois.radb.net AS1273

For a more comprehensive list, see: http://www.onesc.net/communities

route object

- Defines a CIDR prefix and origin AS.
- Most common type of object found in routing registries
- Used by a number of ISPs to generate filters for their customer BGP sessions
 - Customers must register all routes in order for their ISP to route them
 - Allows automation of adding new prefixes to filter sets operated by ISPs

Sample route object

- route: 160.0.0/17
- descr: Packet Clearing House
- origin: AS715
- notify: radb@pch.net
- mnt-by: MAINT-AS3856
- changed: kabindra@pch.net 20170705
- source: RADB

route object key

- Every RPSL object has a primary key
- For most classes it is simply the main class attribute value
- For example, the mntner class uses the mntner attribute value as the key
- However route objects use both router and origin fields as the primary key

route object key

- There can be multiple objects for the same prefix with different origins
- This is by design
 - multi-origin multi-homing
 - when changing to a new origin AS, want routes for both until switched

route object key example

However, many stale objects exists (ISPs are lazy!)

• whois -h <u>whois.radb.net</u> 158.80.0.0/21

(look at the dates)

route:	158.80.0.0/21	
descr:	Baker College	
origin: 🤇	AS237	
mnt-by:	MAINT-AS237	
changed:	ljb@merit.edu 20100302	#19:19:56Z
source:	RADB	

route:	158.80.0.0/21
descr:	Baker College
	G-1050 West Bristol Road
	Flint
	MI 48507-5508, USA
origin: 🤇	AS20379
mnt-by:	MAINT-AS237
changed:	har@merit.edu 20040916
source:	RADB

route6 object class

- Like route object, but for IPv6 prefixes
- Defined in RFC4012
- Functionally equivalent to IPv4

Sample route6 object

route6:

descr:

origin:

mnt-by:

source:

2001:43f8:110::/48 AFRINIC-RFC5855 AS37181 AFRINIC-IT-MNT AFRINIC # Filtered

as-set **object**

- Provides a way of grouping ASes. Name must begin with the prefix "AS-"
- Frequently used to list downstream/customer AS numbers
- May be referenced in aut-num import/export policy expressions
- Can reference another as-set

Sample as-set object

whois -h whois.radb.net AS-PCH

as-set: AS-PCH

descr: ASes announced by Packet Clearing House

members: AS3856, AS42, AS715, AS-RS, AS32978, AS32979, AS35160, AS38052, AS16668, AS44876, AS45170, AS297, AS45494, AS27678, AS52306, AS52234, AS54145, AS187, AS27, AS54390, AS11893, AS52304, AS21556, AS19281, AS10886

- admin-c: Bill Woodcock
- tech-c: Bill Woodcock
- notify: radb@pch.net
- mnt-by: MAINT-AS3856
- changed: kabindra@pch.net 20171013

source: RADB

Search here for a network, Advanced Search			
Packet Clearing House AS42			
Organization	Packet Clearing House		
Also Known As	Woodynet, PCH		
Company Website	http://www.pch.net/		
Primary ASN	42		
IRR Record	AS-PCH Look familiar?		
Route Server URL			
Looking Glass URL	http://lg.pch.net		
Network Type	Educational/Research		
IPv4 Prefixes	600		
IPv6 Prefixes	600		

Pro-tip: Try to make the name something meaningful and easy to guess

More reading

- RFC 2650 Using RPSL in practice
- RFC 2725 Routing Policy System Security
- RFC 2726 PGP Authentication for RIPE Database Updates
- RFC 2769 Routing Policy System Replication
- RFC 4012 RPSLng RPSL extensions

4byte / 32bit ASNs

- RFC 4893 defines 32bit ASN support
- RFC 5396 standardised representation
 - asplain format uses simple integers (AS327576 vs. AS5.1)
- RPSL implementations and routing registries have 32bit ASN support

<pause>

Sample queries

- IRRs support a number of flag options. eg. "-i" flag performs inverse query
 - "-i mnt-by MAINT-AS3856" returns all routes objects maintained by MAINT-AS3856
 - "-i origin AS42" returns all route objects with an origin of AS42
- -M flag returns more specific router objects for a prefix
 - "-M 70.40.0.0/21" returns more specific objects in the 70.40.0.0/21 prefix

More queries

- -s flag limits the sources queried
 - "-s RADB, AFRINIC"
 - -K flag return primary keys only
 - Useful for router object queries; excludes extraneous fields not usually needed for policy

More on RPSL

- The aut-num object can be used to express an Autonomous System's routing policy and peering information
- Structured syntax allows for complex policy expressions
- Some operators drive their network configuration from their RPSL data
- Others simply use it to document AS relationships in a public way

AS1 provides transit to AS2 and AS3 AS1 peers with AS20

autnum: AS-MY-ASONE

•••

export: to AS20 permit AS-MY-ASONE

IRR Tools

- IRRToolSet (<u>http://irrtoolset.isc.org</u>)
- NET::IRR
- RPSLtool (http://www.linux.it/~md/software/)
- IRRPT (https://sourceforge.net/projects/irrpt/)
- bgpq3 (<u>http://snar.spb.ru/prog/bgpq3/</u>)
- filtergen (Level 3)
 - whois -h <u>filtergen.level3.net</u> SOURCE::AS-SET
 - whois -h <u>filtergen.level3.net</u> RADB::AS-PCH

Problems with the IRR

- Accuracy is not maintained
- Verification is not possible
- No consistency in usage

Problems with the IRR

- No consistency in usage 'I cover these later

Scenario #1:

You get new IP address space from your RIR. What are your actions?

Scenario #1:

You get new IP address space from your RIR. What are your actions?

Register new route object.

Origin ASN = *your ASN*

Scenario #2:

 One of your customers gets new address space from [..]? What are your actions?

Scenario #2:

 One of your non-BGP customers gets new address space from [..]? What are your actions?

Verify the address space using WHOIS

Register a proxy route object using your ASN

Scenario #3:

You get a new BGP capable customer. What are your actions?

Scenario #3:

You get a new BGP capable customer. What are your actions?

Get your customer to register their routes (or AS-SET)

Append their AS (or AS-SET) to your AS-SET

IRRPT Quick intro

Getting it running

- Download it from Github.
- Run php configure.php
- Fix issues.
- Profit in time :-)

Generating router configs Replace Cisco with \$prefered brand

root@Graphing:~/irrpt-master# bin/irrpt_pfxgen -f cisco 42 conf t

no ip prefix-list CUSTOMER:42

no ipv6 prefix-list CUSTOMERv6:42

ip prefix-list CUSTOMER:42 permit 4.67.64.0/22 le 24

ip prefix-list CUSTOMER:42 permit 9.9.9.0/24

ip prefix-list CUSTOMER:42 permit 31.135.128.0/19 le 24 ip prefix-list CUSTOMER:42 permit 38.124.249.0/24

<snip>

ipv6 prefix-list CUSTOMERv6:42 permit 2800:110:10::/48 ipv6 prefix-list CUSTOMERv6:42 permit 2801:140:10::/48 end

write mem

Generating mikrotik configs

- Mikrotik needs an additional wrapper.
- Download and unzip script into working directory

https://edd.za.net/download/mkirrpt.zip

./mk.sh AS42-infilter 42

root@Graphing:~/mikrotik# ./mk.sh AS42filters 42 /routing filter set [find where chain=AS42filters-IPv4] comment="deleteme:"; /routing filter set [find where chain=AS42filters-IPv6] comment="deleteme:"; /routing filter add chain=AS42filters-IPv4 prefix=4.67.64.0/22 prefix-length=22-24 action=accept /routing filter add chain=AS42filters-IPv4 prefix=9.9.9.0/24 action=accept /routing filter add chain=AS42filters-IPv4 prefix=31.135.128.0/19 prefix-length=19-24 action=accept /routing filter add chain=AS42filters-IPv4 prefix=38.124.249.0/24 action=accept /routing filter add chain=AS42filters-IPv4 prefix=45.221.0.0/22 prefix-length=22-24 action=accept /routing filter add chain=AS42filters-IPv4 prefix=45.221.0.0/22 prefix-length=22-24 action=accept /routing filter add chain=AS42filters-IPv4 prefix=45.221.16.0/22 prefix-length=22-24 action=accept /routing filter add chain=AS42filters-IPv4 prefix=45.250.60.0/22 prefix-length=22-24 action=accept

<snip>

/routing filter add chain=AS42filters-IPv6 prefix=2801:140:10::/48 action=accept /routing filter add chain=AS42filters-IPv6 action=reject /routing filter remove [find where chain=AS42filters-IPv4 and comment="deleteme:"] /routing filter remove [find where chain=AS42filters-IPv6 and comment="deleteme:"]

Batch filter generation!

- Edit as.txt with asns or route sets
- ./batchmikrotik.sh > rules.txt
- Copy to mikrotik
- Import \$filename

Want notices when prefixes change?

- Edit conf/irrdb.conf
- Cron bin/irrpt_fetch
- Receive email once it changes.

Other useful things

- Plug it into Rancid,
- Use Net::Telnet::Cisco or JUNOScript to dump configs to routers

Problems

Suffers with big route sets eg. he.net

bgpq3

Using bgpq3

- We're going to use bgpq3 (because it's fast) to help us create filters for some of our peers.
- Install bgpq3 on a *NIX host (or if you're forced to use Windows ask someone here for a shell)
- Find it in your OS repository, or download from GH: https://github.com/snar/bgpq3

Supplementary tools

• ixgen: https://github.com/ipcjk/ixgen

• pinder: https://github.com/dotwaffle/pinder

LibreNMS +

				\sim				
LibreNM	S	🖀 Overview 📑 Devices 🧣	o Ports	😍 Health	📑 Apps 💢 Routing 🌔 Alerts		≜ ² ≎	Global Search
Routing » VRFs (1) OSPF (25) BGP (178) CEF (31)								
BGP » All iBGP	eBGF	P Shutdown Enabled D	own		No Graphs Updates Prefixes: Unica	ast (IPv4 IPv6 VPNv4 VPNv6)	Multicast (IPv	4 IPv6) MAC (Bits Pack
Local address		Peer address	Туре	Family	Remote AS	Peer description	State	Uptime / Updates
br1.bre.inx	*	2001:43f8:1f4::2	iBGP	ipv6.unicast	AS37663 CINX, ZA		start active	Updates ✔ 0 ♠ 0
br1.bre.inx	*	196.223.22.1	eBGP	ipv4.unicast	AS37701 CINX-ROUTESRV, ZA		start idle	Updates 🕹 0 🛧 0
br1.bre.inx	*	196.223.22.2	eBGP	ipv4.unicast	AS37701 CINX-ROUTESRV, ZA		start idle	Updates 🕹 0 🛧 0
br1.dpr.inx	*	196.10.54.2	iBGP	ipv4.unicast	AS37663 CINX, ZA		start idle	Updates 🕹 0 🛧 0
br1.dpr.inx	*	2001:43f8:1f4::2	iBGP	ipv6.unicast	AS37663 CINX, ZA		start idle	Updates 🕹 0 🛧 0
br1.nls.inx	*	196.10.54.2	iBGP	ipv4.unicast	AS37663 CINX, ZA		start idle	Updates 🕹 0 🛧 0
br1.nls.inx	*	2001:43f8:1f4::2	iBGP	ipv6.unicast	AS37663 CINX, ZA		start idle	Updates 🕹 0 🛧 0
br2.pkl.inx	*	196.10.53.84	eBGP	ipv4.unicast	AS42 WOODYNET-1 - WoodyNet, US		start idle	Updates 🕹 0 🛧 0
br2.pkl.inx	*	2001:43f8:1f3:e00::4	eBGP	ipv6.unicast	AS42 WOODYNET-1 - WoodyNet, US		start idle	Updates 🕹 0 🛧 0
	*	196.10.53.85	eBGP	ipv4.unicast	AS715		start	

- Provides a cryptographically verifiable means to validate information that is in the database.
- Solves the question of: Is that ASN authorised to originate that prefix
- Often called: "Origin Validation"

- Concept of private and personal keys hasn't changed.
- 2 implementation methods (delegated or hosted)

RPKI Building blocks

- Trust Anchors
- ROAs
- Validators

- Builds trust by building a chain of certificates
- TA (Trust Anchor) being the top most CA
- EE certificates at the leaf level (ROA)
- Certificates contain Internet resources
- Validation works by running the chain of trust from root to leaves

ROA

What is a ROA

 A ROA is a digitally signed object that provides a means of verifying that an IP Address block holder has authorised an Autonomous System (AS) to originate routes to one of more prefixes within the address block.

What is a ROA

 A ROA is a digitally signed object that provides a means of verifying that an IP Address block holder has authorised an Autonomous System (AS) to originate routes to one of more prefixes within the address block.

ie. x509 cert ...

ROAs

- Simply construct of:
 - prefix
 - asn
 - min + max prefix_length
 - expiry date

- ROAs can overlap
- Multiple ROAs can exist

Trust anchors

- RIRs have these for the majority blocks
- RIRs have complicated rules for dealing with minority blocks
- 4x RIRs publish these easily; ARIN makes you sign some legal stuff
- A URL and a Public Key that must be able to decrypt the cert found at the URL (so you know you can trust it)

Validators

- Software.
 - Current favorite : Routinator 3000
 - https://nlnetlabs.nl/projects/rpki/routinator/
 - RIPE NCC V2 (v3 in dev)
- Speaks rsync to trust anchors to synchronise ROAs
- Performs validation
- Speaks RPKI-RTR protocols to routers

Validators

- Produces a result that is either
 - 0 NotFound
 - 1 Valid
 - 2 Invalid

Configuring your device

- https://www.inx.net.za/display/pub/RPKI+Validation
- Cisco IOS 15.2+
- Cisco IOS/XR 4.3.2+
- JunOS 12.2+
- Mikrotik v7.x

What are the BGP / VRP¹ Matching Rules?

¹ Validated ROA Payload

thanks randy! 53

2013.06.14 AfNOG RPKI

A Prefix is **Covered** by a VRP when the VRP prefix length is less than or equal to the Route prefix length

Prefix is Matched by a VRP when the Prefix is Covered by that VRP , prefix length is less than or equal to the VRP max-len, and the Route Origin AS is equal to the VRP's AS

Matching and Validity

- BGP 98.128.0.0/12 AS 42 NotFound, shorter than VRPs
- BGP 98.128.0.0/16 AS 42 Valid, Matches VRP1
- BGP 98.128.0.0/20 AS 42 Valid, Matches VRP1
- BGP 98.128.0.0/24 AS 42 Invalid, longer than VRP with AS 42
- **BGP** 98.128.0.0/24 AS 6 Valid, Matches VRPo

In real life

conf t

router bgp 37474

bgp rpki server tcp 196.10.53.22 port 3323 refresh 600

Practical Use case

route-map MatchRPKIState0

match rpki valid

set local-preference 100

route-map MatchRPKIState1

match rpki not-found

set local-preference 50

Placing your Caches.

