
Internet Routing 
Registry Tutorial



Prerequisites

• You should have some idea of how 
Internet peering and transit works 

• You should have conceptual BGP skills

• You should know how to manipulate 
objects in a WHOIS database



The IRR

• Concept of “the” Internet Routing Registry system 
established in 1995

• Web site at http://www.irr.net 

• Initially RIPE-(1)81 format, shifted to RPSL

• Mirror routing registry data in a common repository 
for simplified queries - “the union of world-wide 
routing policy databases”

http://www.irr.net/


The IRR

• Today, consists of about 40 registries operated by

• RIRs  (AfriNIC / RIPE)

• ISPs (NTT / CenturyLink, C&W)

• Non-affiliated public registries (RADB / ALTDB)



The RADB

• Routing Arbiter DataBase (managed by Merit)

• One of the earliest routing registry databases



Why use an IRR?

• Document routing policy

• Register route objects to associate network 
prefixes with origin AS

• Solves the problem of:  What prefixes should my 
peer / customer be announcing to me?  



Why use an IRR?

• A number of transit providers require their 
customers to register routes and filter customer 
route announcements based on registry contents.

• Filters prevent unauthorised announcements;  
protects against route hijacking, denial of service, 
etc 



Querying the IRR
• Historically, IRRs have the “WHOIS” protocol (TCP 

43) 

• Two primary IRR server implementations

• RIPE DB from RIPE NCC

• IRRd server from Merit

• Some IRRs offer Web/REST based queries

• Possible to run your own IRRd.



RPSL specifics
• Each object type (class) contains mandatory and 

optional attributes

• All objects must have these attributes:

• mnt-by:   identifies mntner object that controls 
the objects

• changed:  lists email and time of change

• source:  identifies the registry name where the 
object is located



Using the IRR

• You need an AS number to use a registry  (Ask your 
RIR)

• You need a mntner object (ie. be safe)

• You need an autnum object  (ie.  have an ASN)

• You need route object(s)



mntner object
• mntner is an abbreviation of maintainer

• identifies accounts in the registry

• specifies authentication mechanism in the “auth” 
attribute.  Either:  

• PGP-KEY - PGP/GPG based auth

• (B)CRYPT-PW / MD5-PW  - password auth

• MAIL-FROM - email based auth



mntner object
• mntner is an abbreviation of maintainer

• identifies accounts in the registry

• specifies authentication mechanism in the “auth” 
attribute.  Either:  

• PGP-KEY - PGP/GPG based auth

• BCRYPT-PW

• CRYPT-PW / MD5-PW  - password auth

• MAIL-FROM - email based authDEPRECATED



Sample mntner 
object



aut-num object

• Defines routing policy for an AS

• Uses import: and export: attributes to specify 
policy

• Can be used for highly detailed policy descriptions 
and automated config generation

• Can reference other registry objects such as as-
sets, route-sets, and filter-sets



Sample aut-num 
object

aut-num:    AS42
as-name:    UNSPECIFIED

descr:      Packet Clearing House - www.pch.net

admin-c:    Bill Woodcock

tech-c:     Bill Woodcock

export:     to AS-ANY   announce AS-PCH

remarks:    peering@pch.net, +1 866 BGP PEER

notify:     radb@pch.net

mnt-by:     MAINT-AS3856

changed:    scg@pch.net 20041121

source:     RADB



Alternate aut-num 
uses

• Often used to register BGP community support 
offered by service providers

Example:   whois -h whois.radb.net AS1273

     For a more comprehensive list, see:  
     http://www.onesc.net/communities

http://whois.radb.net/


route object
• Defines a CIDR prefix and origin AS.

• Most common type of object found in routing 
registries 

• Used by a number of ISPs to generate filters for 
their customer BGP sessions 

• Customers must register all routes in order for 
their ISP to route them

• Allows automation of adding new prefixes to 
filter sets operated by ISPs



Sample route object

route:      160.0.0.0/17

descr:      Packet Clearing House

origin:     AS715

notify:     radb@pch.net

mnt-by:     MAINT-AS3856

changed:    kabindra@pch.net 20170705

source:     RADB



route object key

• Every RPSL object has a primary key

• For most classes it is simply the main class 
attribute value

• For example, the mntner class uses the mntner 
attribute value as the key

• However route objects use both router and origin 
fields as the primary key



route object key

• There can be multiple objects for the same prefix 
with different origins

• This is by design

• multi-origin multi-homing

• when changing to a new origin AS, want routes 
for both until switched 



route object key 
example

• However, many stale objects exists (ISPs are lazy! )

•    whois -h whois.radb.net 158.80.0.0/21 

   (look at the dates) 

http://whois.radb.net/




route6 object class

• Like route object, but for IPv6 prefixes

• Defined in RFC4012

• Functionally equivalent to IPv4



Sample route6 
object

route6:         2001:43f8:110::/48

descr:          AFRINIC-RFC5855

origin:         AS37181

mnt-by:         AFRINIC-IT-MNT

source:         AFRINIC # Filtered



as-set object

• Provides a way of grouping ASes.  Name must 
begin with the prefix “AS-”

• Frequently used to list downstream/customer AS 
numbers

• May be referenced in aut-num import/export policy 
expressions

• Can reference another as-set



Sample as-set object

whois -h whois.radb.net AS-PCH

http://whois.radb.net/


as-set:     AS-PCH

descr:      ASes announced by Packet Clearing House

members:    AS3856, AS42, AS715, AS-RS, AS32978, AS32979, 
AS35160, AS38052, AS16668, AS44876, AS45170, AS297, AS45494, 
AS27678, AS52306, AS52234, AS54145, AS187, AS27, AS54390, 
AS11893, AS52304, AS21556, AS19281, AS10886

admin-c:    Bill Woodcock

tech-c:     Bill Woodcock

notify:     radb@pch.net

mnt-by:     MAINT-AS3856

changed:    kabindra@pch.net 20171013

source:     RADB



Look familiar? 

Pro-tip:  Try to make the name something meaningful and easy to guess



More reading

• RFC 2650 - Using RPSL in practice

• RFC 2725 - Routing Policy System Security

• RFC 2726 - PGP Authentication for RIPE Database 
Updates

• RFC 2769 - Routing Policy System Replication

• RFC 4012 - RPSLng - RPSL extensions



4byte / 32bit ASNs

• RFC 4893 defines 32bit ASN support

• RFC 5396 standardised representation

• asplain format uses simple integers (AS327576 
vs. AS5.1) 

• RPSL implementations and routing registries have 
32bit ASN support



<pause>



Sample queries
• IRRs support a number of flag options.   eg. “-i” flag 

performs inverse query

• “-i mnt-by MAINT-AS3856” returns all routes 
objects maintained by MAINT-AS3856

• “-i origin AS42” returns all route objects with an 
origin of AS42

• -M flag returns more specific router objects for a prefix

• “-M 70.40.0.0/21” returns more specific objects in 
the 70.40.0.0/21 prefix



More queries

• -s flag limits the sources queried

• “-s RADB,AFRINIC”

• -K flag - return primary keys only

• Useful for router object queries;  excludes 
extraneous fields not usually needed for policy

• “-K 70.40.0.0” returns
route:  70.40.0.0/21

origin:  AS42



More on RPSL
• The aut-num object can be used to express an 

Autonomous System’s routing policy and peering 
information

• Structured syntax allows for complex policy 
expressions

• Some operators drive their network configuration 
from their RPSL data

• Others simply use it to document AS relationships 
in a public way



Routing policy

AS1 provides transit to AS2 and AS3

AS1 peers with AS20

1

3

2

20



in RPSL

autnum:  AS1
import:  from AS2 accept AS2
import:  from AS3 accept AS3
import:  from AS20 accept AS20
export:  to AS2 permit ANY
export:  to AS3 permit ANY
export:  to AS20 permit AS1 AS2 AS3

1

3

2

20



using as-set

autnum:  AS-MY-ASONE

…

export:  to AS20 permit AS-MY-ASONE

1

3

2

20



IRR Tools
• IRRToolSet (http://irrtoolset.isc.org)

• NET::IRR 

• RPSLtool - (http://www.linux.it/~md/software/)

• IRRPT (https://sourceforge.net/projects/irrpt/)

• bgpq3  (http://snar.spb.ru/prog/bgpq3/)

• filtergen (Level 3)

• whois -h filtergen.level3.net SOURCE::AS-SET

• whois -h filtergen.level3.net RADB::AS-PCH

http://irrtoolset.isc.org/
http://snar.spb.ru/prog/bgpq3/
http://filtergen.level3.net/
http://filtergen.level3.net/


Problems with the 
IRR

• Accuracy is not maintained

• Verification is not possible

• No consistency in usage



Problems with the 
IRR

• Accuracy is not maintained

• Verification is not possible

• No consistency in usage

…and we’ll c
over th

ese 

later



Scenario #1:  

• You get new IP address space from your RIR.  What 
are your actions? 



Scenario #1:  

• You get new IP address space from your RIR.  What 
are your actions? 

Register new route object.  

Origin ASN = your ASN



Scenario #2:  

• One of your customers gets new address space 
from [..]?   What are your actions?  



Scenario #2:  

• One of your non-BGP customers gets new address 
space from [..]?   What are your actions?  

Verify the address space using WHOIS

Register a proxy route object using your ASN



Scenario #3:  

• You get a new BGP capable customer.  What are 
your actions?   



Scenario #3:  

• You get a new BGP capable customer.  What are 
your actions?   

Get your customer to register their routes (or AS-
SET)

Append their AS (or AS-SET) to your AS-SET



IRRPT
Quick intro



Getting it running

• Download it from Github.

• Run php configure.php 

• Fix issues.

• Profit in time :-)



Generating router configs
Replace Cisco with $prefered 

brand

root@Graphing:~/irrpt-master# bin/irrpt_pfxgen -f cisco 42
conf t
no ip prefix-list CUSTOMER:42
no ipv6 prefix-list CUSTOMERv6:42
ip prefix-list CUSTOMER:42 permit 4.67.64.0/22 le 24
ip prefix-list CUSTOMER:42 permit 9.9.9.0/24
ip prefix-list CUSTOMER:42 permit 31.135.128.0/19 le 24
ip prefix-list CUSTOMER:42 permit 38.124.249.0/24
<snip>
ipv6 prefix-list CUSTOMERv6:42 permit 2800:110:10::/48
ipv6 prefix-list CUSTOMERv6:42 permit 2801:140:10::/48
end
write mem



Generating mikrotik 
configs

• Mikrotik needs an additional wrapper.  

• Download and unzip script into working directory

    https://edd.za.net/download/mkirrpt.zip



./mk.sh AS42-infilter 42

root@Graphing:~/mikrotik# ./mk.sh AS42filters 42
/routing filter set [ find where chain=AS42filters-IPv4 ] comment="deleteme:";
/routing filter set [ find where chain=AS42filters-IPv6 ] comment="deleteme:";
/routing filter add chain=AS42filters-IPv4 prefix=4.67.64.0/22 prefix-length=22-24 action=accept
/routing filter add chain=AS42filters-IPv4 prefix=9.9.9.0/24 action=accept
/routing filter add chain=AS42filters-IPv4 prefix=31.135.128.0/19 prefix-length=19-24 action=accept
/routing filter add chain=AS42filters-IPv4 prefix=38.124.249.0/24 action=accept
/routing filter add chain=AS42filters-IPv4 prefix=45.221.0.0/22 prefix-length=22-24 action=accept
/routing filter add chain=AS42filters-IPv4 prefix=45.221.16.0/22 prefix-length=22-24 action=accept
/routing filter add chain=AS42filters-IPv4 prefix=45.250.60.0/22 prefix-length=22-24 action=accept

<snip>
/routing filter add chain=AS42filters-IPv6 prefix=2801:140:10::/48 action=accept
/routing filter add chain=AS42filters-IPv6 action=reject
/routing filter remove [ find where chain=AS42filters-IPv4  and comment="deleteme:" ]
/routing filter remove [ find where chain=AS42filters-IPv6  and comment="deleteme:" ]



Batch filter 
generation!

• Edit as.txt with asns or route sets

• ./batchmikrotik.sh > rules.txt

• Copy to mikrotik 

• Import $filename



Want notices when 
prefixes change?

• Edit conf/irrdb.conf

• Cron bin/irrpt_fetch

• Receive email once it changes.



Other useful things

• Plug it into Rancid,

• Use Net::Telnet::Cisco or JUNOScript to dump 
configs to routers



Problems
Suffers with big route sets eg. he.net 



bgpq3



Using bgpq3

• We’re going to use bgpq3 (because it’s fast) to 
help us create filters for some of our peers.

• Install bgpq3 on a *NIX host  (or if you’re forced to 
use Windows ask someone here for a shell)  

• Find it in your OS repository, or download from GH: 
https://github.com/snar/bgpq3



Supplementary tools

• ixgen:  https://github.com/ipcjk/ixgen

• pinder:  https://github.com/dotwaffle/pinder



LibreNMS + 
Peeringdb



RPKI



RPKI

• Provides a cryptographically verifiable means to 
validate information that is in the database.

• Solves the question of:   Is that ASN authorised 
to originate that prefix

• Often called:  “Origin Validation”



RPKI 

• Concept of private and personal keys hasn’t 
changed.

• 2 implementation methods (delegated or hosted)



RPKI Building blocks

• Trust Anchors

• ROAs 

• Validators



RPKI
• Builds trust by building a chain of certificates

• TA (Trust Anchor) being the top most CA

• EE certificates at the leaf level (ROA)

• Certificates contain Internet resources

• Validation works by running the chain of trust from root 
to leaves





What is a ROA

• A ROA is a digitally signed object that provides 
a means of verifying that an IP Address block 
holder has authorised an Autonomous System 
(AS) to originate routes to one of more prefixes 
within the address block.



What is a ROA

• A ROA is a digitally signed object that provides 
a means of verifying that an IP Address block 
holder has authorised an Autonomous System 
(AS) to originate routes to one of more prefixes 
within the address block.

ie.  x509 cert …



ROAs
• Simply construct of:

• prefix

• asn

• min + max prefix_length

• expiry date

• ROAs can overlap

• Multiple ROAs can exist



Trust anchors

• RIRs have these for the majority blocks

• RIRs have complicated rules for dealing with 
minority blocks

• 4x RIRs publish these easily;   ARIN makes you sign 
some legal stuff

• A URL and a Public Key that must be able to 
decrypt the cert found at the URL (so you know 
you can trust it)



Validators
• Software.

• Current favorite : Routinator 3000

• https://nlnetlabs.nl/projects/rpki/routinator/

• RIPE NCC V2  (v3 in dev)

• Speaks rsync to trust anchors to synchronise ROAs

• Performs validation

• Speaks RPKI-RTR protocols to routers



Validators

• Produces a result that is either

• 0 - NotFound

• 1 - Valid 

• 2 - Invalid



AFRINIC LACNIC
RIPE-
NCC

ARINAPNIC

CACHE

R2 R3R1



Configuring your 
device

• https://www.inx.net.za/display/pub/RPKI+Validation

• Cisco IOS 15.2+ 

• Cisco IOS/XR 4.3.2+

• JunOS 12.2+

• Mikrotik v7.x    😂



thanks randy! 









In real life

conf t

    router bgp 37474

    bgp rpki server tcp 196.10.53.22 port 3323 refresh 
600



Practical Use case

route-map MatchRPKIState0

      match rpki valid

      set local-preference 100

route-map MatchRPKIState1

      match rpki not-found

      set local-preference 50



Placing your Caches.

Region
al 

Cache

Region
al 

Cache

in-POP 
Cache

In-POP 
Cache

In-POP
Cache

In-POP
Cache

https://www.inx.net.za/display/pub/RPKI+Validation
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