
Internet Routing 
Registry Tutorial



Prerequisites

• You should have some idea of how 
Internet peering and transit works 

• You should have conceptual BGP skills

• You should know how to manipulate 
objects in a WHOIS database



The IRR

• Concept of “the” Internet Routing Registry system 
established in 1995

• Web site at http://www.irr.net 

• Initially RIPE-(1)81 format, shifted to RPSL

• Mirror routing registry data in a common repository 
for simplified queries - “the union of world-wide 
routing policy databases”

http://www.irr.net/


The IRR

• Today, consists of about 40 registries operated by

• RIRs  (AfriNIC / RIPE)

• ISPs (NTT / CenturyLink, C&W)

• Non-affiliated public registries (RADB / ALTDB)



The RADB

• Routing Arbiter DataBase (managed by Merit)

• One of the earliest routing registry databases



Why use an IRR?

• Document routing policy

• Register route objects to associate network 
prefixes with origin AS

• Solves the problem of:  What prefixes should my 
peer / customer be announcing to me?  



Why use an IRR?

• A number of transit providers require their 
customers to register routes and filter customer 
route announcements based on registry contents.

• Filters prevent unauthorised announcements;  
protects against route hijacking, denial of service, 
etc 



Querying the IRR
• Historically, IRRs have the “WHOIS” protocol (TCP 

43) 

• Two primary IRR server implementations

• RIPE DB from RIPE NCC

• IRRd server from Merit

• Some IRRs offer Web/REST based queries

• Possible to run your own IRRd.



RPSL specifics
• Each object type (class) contains mandatory and 

optional attributes

• All objects must have these attributes:

• mnt-by:   identifies mntner object that controls 
the objects

• changed:  lists email and time of change

• source:  identifies the registry name where the 
object is located



Using the IRR

• You need an AS number to use a registry  (Ask your 
RIR)

• You need a mntner object (ie. be safe)

• You need an autnum object  (ie.  have an ASN)

• You need route object(s)



mntner object
• mntner is an abbreviation of maintainer

• identifies accounts in the registry

• specifies authentication mechanism in the “auth” 
attribute.  Either:  

• PGP-KEY - PGP/GPG based auth

• (B)CRYPT-PW / MD5-PW  - password auth

• MAIL-FROM - email based auth



mntner object
• mntner is an abbreviation of maintainer

• identifies accounts in the registry

• specifies authentication mechanism in the “auth” 
attribute.  Either:  

• PGP-KEY - PGP/GPG based auth

• BCRYPT-PW

• CRYPT-PW / MD5-PW  - password auth

• MAIL-FROM - email based authDEPRECATED



Sample mntner 
object



aut-num object

• Defines routing policy for an AS

• Uses import: and export: attributes to specify 
policy

• Can be used for highly detailed policy descriptions 
and automated config generation

• Can reference other registry objects such as as-
sets, route-sets, and filter-sets



Sample aut-num 
object

aut-num:    AS42
as-name:    UNSPECIFIED

descr:      Packet Clearing House - www.pch.net

admin-c:    Bill Woodcock

tech-c:     Bill Woodcock

export:     to AS-ANY   announce AS-PCH

remarks:    peering@pch.net, +1 866 BGP PEER

notify:     radb@pch.net

mnt-by:     MAINT-AS3856

changed:    scg@pch.net 20041121

source:     RADB



Alternate aut-num 
uses

• Often used to register BGP community support 
offered by service providers

Example:   whois -h whois.radb.net AS1273

     For a more comprehensive list, see:  
     http://www.onesc.net/communities

http://whois.radb.net/


route object
• Defines a CIDR prefix and origin AS.

• Most common type of object found in routing 
registries 

• Used by a number of ISPs to generate filters for 
their customer BGP sessions 

• Customers must register all routes in order for 
their ISP to route them

• Allows automation of adding new prefixes to 
filter sets operated by ISPs



Sample route object

route:      160.0.0.0/17

descr:      Packet Clearing House

origin:     AS715

notify:     radb@pch.net

mnt-by:     MAINT-AS3856

changed:    kabindra@pch.net 20170705

source:     RADB



route object key

• Every RPSL object has a primary key

• For most classes it is simply the main class 
attribute value

• For example, the mntner class uses the mntner 
attribute value as the key

• However route objects use both router and origin 
fields as the primary key



route object key

• There can be multiple objects for the same prefix 
with different origins

• This is by design

• multi-origin multi-homing

• when changing to a new origin AS, want routes 
for both until switched 



route object key 
example

• However, many stale objects exists (ISPs are lazy! )

•    whois -h whois.radb.net 158.80.0.0/21 

   (look at the dates) 

http://whois.radb.net/




route6 object class

• Like route object, but for IPv6 prefixes

• Defined in RFC4012

• Functionally equivalent to IPv4



Sample route6 
object

route6:         2001:43f8:110::/48

descr:          AFRINIC-RFC5855

origin:         AS37181

mnt-by:         AFRINIC-IT-MNT

source:         AFRINIC # Filtered



as-set object

• Provides a way of grouping ASes.  Name must 
begin with the prefix “AS-”

• Frequently used to list downstream/customer AS 
numbers

• May be referenced in aut-num import/export policy 
expressions

• Can reference another as-set



Sample as-set object

whois -h whois.radb.net AS-PCH

http://whois.radb.net/


as-set:     AS-PCH

descr:      ASes announced by Packet Clearing House

members:    AS3856, AS42, AS715, AS-RS, AS32978, AS32979, 
AS35160, AS38052, AS16668, AS44876, AS45170, AS297, AS45494, 
AS27678, AS52306, AS52234, AS54145, AS187, AS27, AS54390, 
AS11893, AS52304, AS21556, AS19281, AS10886

admin-c:    Bill Woodcock

tech-c:     Bill Woodcock

notify:     radb@pch.net

mnt-by:     MAINT-AS3856

changed:    kabindra@pch.net 20171013

source:     RADB



Look familiar? 

Pro-tip:  Try to make the name something meaningful and easy to guess



More reading

• RFC 2650 - Using RPSL in practice

• RFC 2725 - Routing Policy System Security

• RFC 2726 - PGP Authentication for RIPE Database 
Updates

• RFC 2769 - Routing Policy System Replication

• RFC 4012 - RPSLng - RPSL extensions



4byte / 32bit ASNs

• RFC 4893 defines 32bit ASN support

• RFC 5396 standardised representation

• asplain format uses simple integers (AS327576 
vs. AS5.1) 

• RPSL implementations and routing registries have 
32bit ASN support



<pause>



Sample queries
• IRRs support a number of flag options.   eg. “-i” flag 

performs inverse query

• “-i mnt-by MAINT-AS3856” returns all routes 
objects maintained by MAINT-AS3856

• “-i origin AS42” returns all route objects with an 
origin of AS42

• -M flag returns more specific router objects for a prefix

• “-M 70.40.0.0/21” returns more specific objects in 
the 70.40.0.0/21 prefix



More queries

• -s flag limits the sources queried

• “-s RADB,AFRINIC”

• -K flag - return primary keys only

• Useful for router object queries;  excludes 
extraneous fields not usually needed for policy

• “-K 70.40.0.0” returns
route:  70.40.0.0/21

origin:  AS42



More on RPSL
• The aut-num object can be used to express an 

Autonomous System’s routing policy and peering 
information

• Structured syntax allows for complex policy 
expressions

• Some operators drive their network configuration 
from their RPSL data

• Others simply use it to document AS relationships 
in a public way



Routing policy

AS1 provides transit to AS2 and AS3

AS1 peers with AS20

1

3

2

20



in RPSL

autnum:  AS1
import:  from AS2 accept AS2
import:  from AS3 accept AS3
import:  from AS20 accept AS20
export:  to AS2 permit ANY
export:  to AS3 permit ANY
export:  to AS20 permit AS1 AS2 AS3

1

3

2

20



using as-set

autnum:  AS-MY-ASONE

…

export:  to AS20 permit AS-MY-ASONE

1

3

2

20



IRR Tools
• IRRToolSet (http://irrtoolset.isc.org)

• NET::IRR 

• RPSLtool - (http://www.linux.it/~md/software/)

• IRRPT (https://sourceforge.net/projects/irrpt/)

• bgpq3  (http://snar.spb.ru/prog/bgpq3/)

• filtergen (Level 3)

• whois -h filtergen.level3.net SOURCE::AS-SET

• whois -h filtergen.level3.net RADB::AS-PCH

http://irrtoolset.isc.org/
http://snar.spb.ru/prog/bgpq3/
http://filtergen.level3.net/
http://filtergen.level3.net/


Problems with the 
IRR

• Accuracy is not maintained

• Verification is not possible

• No consistency in usage



Problems with the 
IRR

• Accuracy is not maintained

• Verification is not possible

• No consistency in usage

…and we’ll c
over th

ese 

later



Scenario #1:  

• You get new IP address space from your RIR.  What 
are your actions? 



Scenario #1:  

• You get new IP address space from your RIR.  What 
are your actions? 

Register new route object.  

Origin ASN = your ASN



Scenario #2:  

• One of your customers gets new address space 
from [..]?   What are your actions?  



Scenario #2:  

• One of your non-BGP customers gets new address 
space from [..]?   What are your actions?  

Verify the address space using WHOIS

Register a proxy route object using your ASN



Scenario #3:  

• You get a new BGP capable customer.  What are 
your actions?   



Scenario #3:  

• You get a new BGP capable customer.  What are 
your actions?   

Get your customer to register their routes (or AS-
SET)

Append their AS (or AS-SET) to your AS-SET



IRRPT
Quick intro



Getting it running

• Download it from Github.

• Run php configure.php 

• Fix issues.

• Profit in time :-)



Generating router configs
Replace Cisco with $prefered 

brand

root@Graphing:~/irrpt-master# bin/irrpt_pfxgen -f cisco 42
conf t
no ip prefix-list CUSTOMER:42
no ipv6 prefix-list CUSTOMERv6:42
ip prefix-list CUSTOMER:42 permit 4.67.64.0/22 le 24
ip prefix-list CUSTOMER:42 permit 9.9.9.0/24
ip prefix-list CUSTOMER:42 permit 31.135.128.0/19 le 24
ip prefix-list CUSTOMER:42 permit 38.124.249.0/24
<snip>
ipv6 prefix-list CUSTOMERv6:42 permit 2800:110:10::/48
ipv6 prefix-list CUSTOMERv6:42 permit 2801:140:10::/48
end
write mem



Generating mikrotik 
configs

• Mikrotik needs an additional wrapper.  

• Download and unzip script into working directory

    https://edd.za.net/download/mkirrpt.zip



./mk.sh AS42-infilter 42

root@Graphing:~/mikrotik# ./mk.sh AS42filters 42
/routing filter set [ find where chain=AS42filters-IPv4 ] comment="deleteme:";
/routing filter set [ find where chain=AS42filters-IPv6 ] comment="deleteme:";
/routing filter add chain=AS42filters-IPv4 prefix=4.67.64.0/22 prefix-length=22-24 action=accept
/routing filter add chain=AS42filters-IPv4 prefix=9.9.9.0/24 action=accept
/routing filter add chain=AS42filters-IPv4 prefix=31.135.128.0/19 prefix-length=19-24 action=accept
/routing filter add chain=AS42filters-IPv4 prefix=38.124.249.0/24 action=accept
/routing filter add chain=AS42filters-IPv4 prefix=45.221.0.0/22 prefix-length=22-24 action=accept
/routing filter add chain=AS42filters-IPv4 prefix=45.221.16.0/22 prefix-length=22-24 action=accept
/routing filter add chain=AS42filters-IPv4 prefix=45.250.60.0/22 prefix-length=22-24 action=accept

<snip>
/routing filter add chain=AS42filters-IPv6 prefix=2801:140:10::/48 action=accept
/routing filter add chain=AS42filters-IPv6 action=reject
/routing filter remove [ find where chain=AS42filters-IPv4  and comment="deleteme:" ]
/routing filter remove [ find where chain=AS42filters-IPv6  and comment="deleteme:" ]



Batch filter 
generation!

• Edit as.txt with asns or route sets

• ./batchmikrotik.sh > rules.txt

• Copy to mikrotik 

• Import $filename



Want notices when 
prefixes change?

• Edit conf/irrdb.conf

• Cron bin/irrpt_fetch

• Receive email once it changes.



Other useful things

• Plug it into Rancid,

• Use Net::Telnet::Cisco or JUNOScript to dump 
configs to routers



Problems
Suffers with big route sets eg. he.net 



bgpq3



Using bgpq3

• We’re going to use bgpq3 (because it’s fast) to 
help us create filters for some of our peers.

• Install bgpq3 on a *NIX host  (or if you’re forced to 
use Windows ask someone here for a shell)  

• Find it in your OS repository, or download from GH: 
https://github.com/snar/bgpq3



Supplementary tools

• ixgen:  https://github.com/ipcjk/ixgen

• pinder:  https://github.com/dotwaffle/pinder



LibreNMS + 
Peeringdb



RPKI



RPKI

• Provides a cryptographically verifiable means to 
validate information that is in the database.

• Solves the question of:   Is that ASN authorised 
to originate that prefix

• Often called:  “Origin Validation”



RPKI 

• Concept of private and personal keys hasn’t 
changed.

• 2 implementation methods (delegated or hosted)



RPKI Building blocks

• Trust Anchors

• ROAs 

• Validators



RPKI
• Builds trust by building a chain of certificates

• TA (Trust Anchor) being the top most CA

• EE certificates at the leaf level (ROA)

• Certificates contain Internet resources

• Validation works by running the chain of trust from root 
to leaves





What is a ROA

• A ROA is a digitally signed object that provides 
a means of verifying that an IP Address block 
holder has authorised an Autonomous System 
(AS) to originate routes to one of more prefixes 
within the address block.



What is a ROA

• A ROA is a digitally signed object that provides 
a means of verifying that an IP Address block 
holder has authorised an Autonomous System 
(AS) to originate routes to one of more prefixes 
within the address block.

ie.  x509 cert …



ROAs
• Simply construct of:

• prefix

• asn

• min + max prefix_length

• expiry date

• ROAs can overlap

• Multiple ROAs can exist



Trust anchors

• RIRs have these for the majority blocks

• RIRs have complicated rules for dealing with 
minority blocks

• 4x RIRs publish these easily;   ARIN makes you sign 
some legal stuff

• A URL and a Public Key that must be able to 
decrypt the cert found at the URL (so you know 
you can trust it)



Validators
• Software.

• Current favorite : Routinator 3000

• https://nlnetlabs.nl/projects/rpki/routinator/

• RIPE NCC V2  (v3 in dev)

• Speaks rsync to trust anchors to synchronise ROAs

• Performs validation

• Speaks RPKI-RTR protocols to routers



Validators

• Produces a result that is either

• 0 - NotFound

• 1 - Valid 

• 2 - Invalid



AFRINIC LACNIC
RIPE-
NCC

ARINAPNIC

CACHE

R2 R3R1



Configuring your 
device

• https://www.inx.net.za/display/pub/RPKI+Validation

• Cisco IOS 15.2+ 

• Cisco IOS/XR 4.3.2+

• JunOS 12.2+

• Mikrotik v7.x    😂



thanks randy! 









In real life

conf t

    router bgp 37474

    bgp rpki server tcp 196.10.53.22 port 3323 refresh 
600



Practical Use case

route-map MatchRPKIState0

      match rpki valid

      set local-preference 100

route-map MatchRPKIState1

      match rpki not-found

      set local-preference 50



Placing your Caches.

Region
al 

Cache

Region
al 

Cache

in-POP 
Cache

In-POP 
Cache

In-POP
Cache

In-POP
Cache

https://www.inx.net.za/display/pub/RPKI+Validation

	Slide 1
	Prerequisites
	The IRR
	The IRR
	The RADB
	Why use an IRR?
	Why use an IRR?
	Querying the IRR
	RPSL specifics
	Using the IRR
	mntner object
	mntner object
	Sample mntner object
	aut-num object
	Sample aut-num object
	Alternate aut-num uses
	route object
	Sample route object
	route object key
	route object key
	route object key example
	Slide 22
	route6 object class
	Sample route6 object
	as-set object
	Sample as-set object
	Slide 27
	Slide 28
	More reading
	4byte / 32bit ASNs
	<pause>
	Sample queries
	More queries
	More on RPSL
	Routing policy
	in RPSL
	using as-set
	IRR Tools
	Problems with the IRR
	Problems with the IRR
	Scenario #1:
	Scenario #1:
	Scenario #2:
	Scenario #2:
	Scenario #3:
	Scenario #3:
	IRRPT
	Getting it running
	Generating router configs Replace Cisco with $prefered brand
	Generating mikrotik configs
	./mk.sh AS42-infilter 42
	Batch filter generation!
	Want notices when prefixes change?
	Other useful things
	Problems
	bgpq3
	Using bgpq3
	Supplementary tools
	LibreNMS + Peeringdb
	RPKI
	RPKI
	RPKI
	RPKI Building blocks
	RPKI
	Slide 72
	What is a ROA
	What is a ROA
	ROAs
	Trust anchors
	Validators
	Validators
	Slide 79
	Configuring your device
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	In real life
	Practical Use case
	Placing your Caches.

