E-Mail

SMTP, POP, and IMAP
Scope

• How Email Appears to Work
• How Email Really Works
• Mail User Agent (MUA)
• Message Format
• Mail Delivery Agent (MDA)/ Mail Transfer Agent (MTA)
• Firewalls, Spam and Virus Filters
How Email Appears To Work
Mail User Agent (MUA)

- Application the originating sender uses to compose and read email
 - Pine, MH, Elm, mutt, mail, Eudora, Marcel, Mailstrom,
 - Thunderbird, Pegasus, Express, Netscape, Outlook, ...
- You can have multiple MUAs on one system - end user choice
Message Format

- **Envelope**
 - Routing information for the "postman"

- **Message Header**
 - Sender
 - Recipients (simple, lists, copies, blind copies)
 - Other fields of control (date, subject)

- **Message Body**
 - Free text
 - Structured document (i.e.: MIME)
Message Format

From: Philip Hazel <ph10@cus.cam.ac.uk>
To: Julius Caesar <julius@ancient-rome.net>
Cc: Mark Anthony <MarkA@cleo.co.uk>
Subject: How Internet mail works

Julius,

I'm going to be running a course on ...

• Format was originally defined by RFC 822 in 1982
• Now superseded by RFC 2822
• Message consists of
 • Header lines
 • A blank line
 • Body lines
Embedded MUA uses interprocess call to send to MTA
Freestanding MUA uses SMTP to send mail
Headers added by the MUA before sending
 From: Philip Hazel <ph10@cus.cam.ac.uk>
 To: Julius Caesar <julius@ancient-rome.net>
 cc: Mark Anthony <MarkA@cleo.co.uk>
 Subject: How Internet mail works

Date: Fri, 10 May 2002 11:29:24 +0100 (BST)
Message-ID: <Pine.SOL.3.96.990117111343.19032A-100000@taurus.cus.cam.ac.uk>
MIME-Version: 1.0
Content-Type: TEXT/PLAIN; charset=US-ASCII

Julius,

I'm going to be running a course on ...
MDA/MTA accepts the email, then routes it to local mailboxes or forwards it if it isn't locally addressed.

An email can encounter a network cloud within a large company or ISP, or the largest network cloud in existence: the Internet.
Mail Delivery Agent (MDA) / Mail Transfer Agent (MTA)

Headers added by MTAs

Received: from taurus.cus.cam.ac.uk
 ([192.168.34.54] ident=exim)
 by mauve.csi.cam.ac.uk with esmtp
 (Exim 4.00) id 101qxX-00011X-00;
 Fri, 10 May 2002 11:50:39 +0100

Received: from ph10 (helo=localhost)
 by taurus.cus.cam.ac.uk with local-smtp
 (Exim 4.10) id 101qin-0005PB-00;
 Fri, 10 May 2002 11:50:25 +0100

From: Philip Hazel <ph10@cus.cam.ac.uk>
To: Julius Caesar <julius@ancient-rome.net>
cc: Mark Anthony <MarkA@cleo.co.uk>
...

...
Message in transit

- A message is transmitted with an envelope:
 MAIL FROM:<ph10@cus.cam.ac.uk>
 RCPT TO:<julius@ancient-rome.net>
- The envelope is separate from the RFC 2822 message
- Envelope (RFC 2821) fields need not be the same as the header (RFC 2822) fields
- MTAs are (mainly) concerned with envelopes
 Just like the Post Office...
- Error ("bounce") messages have null senders
 MAIL FROM:< >
An SMTP Session Example

220 server.bluepipe.net ESMTP Postfix
HELO macbook.catpipe.net
250 server.bluepipe.net
MAIL From: <regnauld@x0.dk>
250 2.1.0 Ok
RCPT To: <regnauld@nsrc.org>
250 2.1.5 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
Subject: hello
.
250 2.0.0 Ok: queued as 41A8B4F5C94
QUIT
221 2.0.0 Bye
SMTP: response codes

- 1xx: positive preliminary answer (action to be continued in subsequent command)
- 2xx: positive response indicating that processing has been carried out as requested
- 3xx: positive partial response: the client must give more data for processing to continue
- 4xx: negative answer, processing is refused, but the command can be tried again later
- 5xx: negative answer, processing cannot be carried out
ESMTP

220 server.bluepipe.net
ESMTP Postfix

EHLO macbook.catpipe.net
250-server.bluepipe.net
250-PIPELINING
250-SIZE 104857600
250-VRFY
250-ETRN
250-ENHANCEDSTATUSCODES
250-8BITMIME
250-DSN
250-BINARYMIME
250 CHUNKING
MAIL From: <regnauld@x0.dk>
...

• Defined in RFC 1869
 • Adds new functionality
 • Transport of 8bit MIME messages
 • Maximum message size limit
 • Function limitation (EXPN, VRFY, ...)
 • Other extensions (pipelining, private extensions)

• The welcome message for ESMTP is EHLO (instead of HELO). In case of a negative answer, the client must revert to the old protocol.
Network Cloud

- large company network or ISP, or the largest network cloud in existence: the Internet.
- may encompass a multitude of mail servers, DNS servers, routers, lions, tigers, bears (wolves!) and other devices and services
- devices may be protected by firewalls, spam filters and malware detection software that may bounce or even delete an email
Email Queue

• The email **enters an email queue with other outgoing email messages**.
• If there is a high volume of mail in the queue—either because there are many messages or the messages are unusually large, or both—
• the message will be delayed in the queue until the MTA processes the messages ahead of it.
• Transient failures will cause mail to stay in the queue until they are fixed for a configurable period of time:
• Permanent failures will cause the MTA to create a bounce message (from mailer-daemon) that gets sent to the original sender specified in the envelope UNLESS the sender field there is empty (<>)

image from http://computer.howstuffworks.com/e-mail-messaging/email3.htm
MTA to MTA Transfer

- Email clears the queue, enters the Internet network cloud, where it is routed along a host-to-host chain of servers.
- The sending MTA handles all aspects of mail delivery until the message has been either accepted or rejected by the receiving MTA.
- Each MTA needs to "stop and ask directions" from the DNS in order to identify the next MTA in the delivery chain.
- Exact route depends partly on server availability and mostly on which MTA can be found to accept email for the domain specified in the address.
- **ABUSE**: Some spammers specify any part of the path, deliberately routing their message through a series of relay servers in an attempt to obscure the true origin of the message.
DNS resolution and transfer process

• To find the recipient's IP address and mailbox, the MTA must drill down through the DNS system, which consists of a set of servers distributed across the Internet beginning with the root nameservers
 • root servers refer requests for a given domain to the root nameservers that handle requests for that tld
 • *MTA can bypass this step because it has already knows which domain nameservers handle requests for these .tlds e.g. telecom.ma*
 • asks the appropriate DNS server which Mail Exchange (MX) servers have knowledge of the subdomain or local host in the email address
 • DNS server responds with an MX record: a prioritized list of MX servers for this domain
 • To the DNS server, the server that accepts messages is an MX server. When is transferring messages, it is called an MTA.
 • MTA contacts the MX servers on the MX record in order of priority until it finds the designated host for that address domain
 • sending MTA asks if the host accepts messages for the recipient's username at that domain (i.e., username@domain.tld) and transfers the message
Firewalls, spam, and virus filters

- An email encountering a firewall may be tested by spam and virus filters before it is allowed to pass inside the firewall.
- Filters test to see if the message qualifies as spam or malware.
- If the message contains malware, the file is usually quarantined and the sender is notified.
- If the message is identified as spam, it will probably be deleted without notifying the sender.
Delivery

- If the message makes it past the filters:
 - The MTA calls a local MDA to deliver the mail to the correct mailbox, where it will sit until it is retrieved by the recipient's MUA.
Bibliography: RFCs

- RFC 2821, 2822,
- RFC 1122, 1123: prerequisites for machines connected to the Internet
- RFC 1869: extensions to the SMTP protocol
- RFC 1653: SIZE extension
- RFC 1830: transporting large messages containing binaries
- MIME RFCs...