Virtualization Overview

Isabel Odida AFNOG SS-E 2018

1

What are we using this Year?

- NUC servers
- Intel core i5 quad core 8 hyperthreads
- 32GB of ram
- 2 x 256GB SATA SSD
- . A pretty hefty server
- Less than \$2k
- Drawbacks
 - One psu
 - . OOB is kind of a pain
- . Ubuntu 14 04 / KVM

What is it?

- Virtualization is the abstraction of the manifestation of a resource from the actual physical instance of that resource.
- What Computing/Network resources can be virtualized?
 - Virtually anything! :)

Anything?

- In the context of this course. We're interested in virtualization along two dimensions:
 - . Services
 - . Hosts

Resource/Service virtualization

• Examples:

- Load-balancers
- . DNS Based GLB
- HTTP(S) Virtual Hosting
- MX records
- . Virtual Switches
- Virtual Routers
- Virtual Firewalls

Resource Virtualization - Continued

- HTTP virtual hosts
 - Multiple websites on one system
- Load Balancing
 - One (or many sites or applications) across many systems
 - Can be done at Layer-3/4/7

Host Virtualization

- Examples
 - VMware
 - . KVM (Used in class)
 - . Virtual-Box (Simplest to use)
 - . XEN
 - FreeBSD and Linux Jails
 - Windows Hyper-V
 - . LXC/D (I shall never recommend)
 - Proxmox

What problem are we attempting to solve with host virtualization.

- Problem 1 Idle capacity.
 - Most of the machines in your datacenter are idle most of the time.
 - Capacity you're not using:
 - Cost money up front
 - Cost money to operate
 - Reduces you return on capital
 - Packing discreet systems into a smaller number of servers provides savings along virtually every dimension.

Problems - Continued

- Problem 2 Provisioning
 - Spinning up a new service involves:
 - Acquiring the hardware
 - Building the server
 - Integration with existing services
 - With virtualization we're aiming to short-circuit that
 - Capacity is a resource
 - Machine instances may be cloned or provisioned from common basic images
 - Resources are purchased in bulk and assigned to applications as necessary.

Problems - Continued

- Problem 3 Hardware abstraction
 - Operating systems, servers, and applications evolve at different rates.
 - Providing a common set of infrastructure resources means, virtualized systems are portable across servers
 - . Hardware failure can more easily be managed.
- Abstraction may come at a performance cost however.
 (some workloads are more expensive than others)
 - See:

http://blog.xen.org/index.php/2011/11/29/baremetal-vsxen-vs-kvm-redux/

Examples – Desktop Virtualization

Desktop Virtualization

- Uses
 - Prototyping services or applications before deployment
 - . Utilities that don't run on your operating system
 - Maintaining multiple versions of an environment for support purposes.
 - Staying familiar with unix while running windows (consider compared to the alternative (dual-booting)
- Issues
 - Emulating multiple computers on your laptop/desktop is somewhat resource intensive
- Vmware player and VirtualBox are free.
 - http://www.virtualbox.org/wiki/Downloads
 - https://my.vmware.com/web/vmware/downloads

Examples – Server Virtualization

Virtualized Servers as a Service (Amazon Web Services)

- Much as collocated servers, are available from a hosting provider, virtual servers are also available.
- Model is:
 - You pay for what you use.
 - Flexibility, need fewer servers today than you used, yesterday.
 - Leverage other amazon tools (storage/mapreduce/load-balancing/payments etc)

AWS Steps

- Select availability zone
- Launch new instance
- Select appropriate ami
- Associate with ssh key
- Launch instance
- Add ip
- SSH into new machine instance.
- t1-micro-instances run \$54 a year + bandwidth

Try it for free...

- Free tier for the first Calender year is (per month):
 - 750 hours of EC2 running Linux/Unix Micro instance usage
 - 750 hours of Elastic Load Balancing plus 15 GB data processing
 - 10 GB of Amazon Elastic Block Storage (EBS) plus 1 million IOs, 1 GB snapshot storage, 10,000 snapshot Get Requests and 1,000 snapshot Put Requests
 - 15 GB of bandwidth in and 15 GB of bandwidth out aggregated across all AWS services
- Which is not to say that, at scale EC2 is particularly cheap, (It isn't)
 - Limited capital at risk is in the context of prototyping or experimentation however.

AWS - Continued

- For provisioning purposes cli interaction is possible:
 - http://aws.amazon.com/developertools/351
- Along with tools to support the provisioning and destruction of virtual machines.

Provisioning and management

- Is the glue that makes virtualization usable
- In commercial virtualization environments the provisioning/management toolkits represent the bulk of the licensing cost (VMware) and the secret sauce (VMotion, disaster recovery, backup, etc)
- Examples:
 - XEN tools a collection of perl scripts for spinning VMs http://www.xen-tools/
 - KVM tools http://www.linux-kvm.org/page/Management_Tools
 - Cloud.com/cloud-stack (orchestration) http://www.cloudstack.org/
 - Rightscale (orchestration multiple public/private clouds) <u>http://www.rightscale.com</u>
 - Puppet (host / configuration management) <u>http://puppetlabs.com/puppet/</u>
 - PDSH (Parallel Shell execution) http://code.google.com/p/pdsh/

Can you spot the...

- Web-node?
- Database-node?
- Load-balancer?
- Nameserver?
- DHCP Server?
- Email cluster?
- Devnodes?

Complimentary technologies

- NIC teaming or Link aggregation
- Network attached storage and network centric filesystems
 - . NFS
 - Hadoopfs
 - GFS2
- Distributed databases
 - . Example mysql cluster
 - . Couchbase/Membase
 - OracleRAC